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Abstract  

Guessing what people think and feel with artificial intelligence (AI) programs represents a leap 

forward for both neuroscience and AI. In this work our method explores the application of 

advanced machine learning techniques known as convolutional brain networks (CNNs) and 

recurrent neural networks (RNNs) for decoding brain signals and predicting cognitive states. 

This novel technique prepares and processes fMRI and electroencephalogram (EEG) data to 

detect signature patterns of brain activity that correspond to given ideas and states of mind. The 

proposed method explicitly guides our CNN-RNN model to localize these patterns, lever- aging 

the spatial feature extraction of CNNs and the temporal sequence learning of RNNs. The 

technique evaluates the performance of the model based on metrics like accuracy, precision, 

recall and F1-score and shows how well it can predict human thinking. These findings improve 

our understanding of brain-computer interfaces (BCIs) and pave the way for applications of 

neuro prosthetics, mental health diagnostics, and human-computer interaction. Further work 

will focus on enhancing the accuracy of the model, increasing the range of cognitive states that 

can be reliably identified, and matters of ethical issues around mind-reading technology. 

Keywords: Artificial Intelligence, Convolutional neural networks, Recurrent neural networks, 

Computer brain. 

 

Introduction  

Scientists and technologists have long been interested in the challenge of understanding and 

predicting human thoughts. Advances in artificial intelligence (AI) have made that dream 

increasingly tangible in the past few years. The research represents a critical advance in the 

rapidly growing field of brain-machine interfaces, which facilitate direct cognitive control over 

external devices. Neuroimaging techniques, such as fMRI or EEG, allow researchers to 

measure patterns of brain activity that are linked to specific mental operations. Artificial 

intelligence, especially via ML algorithms like convolutional neural networks (CNNs) for 

pattern recognition or recurrent neural networks (RNNs) for predictive analytics, has shown 

incredible abilities. CNNs are good at extracting spatial features from high-dimensional data, 

and RNNs are good at processing time series, so NNs are suitable for analyzing complex and 

changing neural signals (LeCun, Bengio, & Hinton, 2015; Hochreiter & Schmidhuber, 1997). 

Their application in brain-computer interfaces (BCIs) opened new opportunities for practical 

use, extending from neuro prosthetics to mental disorder diagnostics and human-machine 
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interactions (Lebedev & Nicolelis, 2006). In addition, the ability to forecast states of the mind 

and beliefs could change specialties such as personalized medicine and cognitive benefits. 

Despite these advances, the field also faces several challenges, such as large-scale 

preprocessing, analysing the complexity of neural signals, and ethical concerns about privacy 

and consent (Nijboer et al., 2008). In this paper, we attempt to tackle these challenges through 

the development of a comprehensive AI pipeline for human thought prediction, discussed at 

length both from the AI and ethical standpoints. On the contrary, it aims to be near 

contemporary work in AI-driven neuroscience so that it can be viewed as part of the pathway 

toward exciting new horizons in mind-reading technologies. 

Literature Review 

1. Brain-computer interfaces and neural decoding development 

Lebedev and Nicolelis (2006) covered the historical roots and prospects of the development of 

brain-machine interfaces (BMI), a technology that can serve as a direct link for the brain to 

external devices by providing new opportunities for the brain to control the peripherals and 

potentially give new sensations. Their work has been instrumental in laying the foundations for 

both AI-based mind-reading technologies and developing practicable BMIs. BMI 

development: groundwork provided by neural recording techniques to understand neural 

signals. Nijboer et al. (2008) have done a lot of research about P300-based brain-computer 

interfaces and have shown that it is possible to decode the user's intentions from 

electrophysiological signals. The results highlight that neural decoding is promising for helping 

people with severe disabilities and holds potential for further use in thought prediction 

applications. 

2. Robust Machine Learning for Neuronal Signal Processing 

Figure 1: Some of the deep learning techniques covered in LeCun, Bengio, & Hinton (2015, 

including convolutional neural networks (CNNs), and how they can be applied in wider 

contexts. Their work established very general use cases for CNNs in the processing of neural 

signals, highlighting their ability to interpret spatial hierarchies in rich datasets. 

A variant of the Recurrent Neural Network (RNN) called Long Short-Term Memory (LSTM) 

networks was introduced by Hochreiter and Schmidhuber (1997) to deal with this issue of 

traditional RNNs. It was their innovation that initiated the use of RNNs on neural temporal 

sequences, which are necessary for predicting dynamic cognitive processes. 

3. AI Applications in Neuroscience 

Van Gerven et al. For example, Haynes et al. (2009) used machine learning methods to analyze 

fMRI data for the purposes of decoding cognitive states. The work of the three researchers 

demonstrated that AI models were not only able to predict visual percepts and some other 

mental states from neural activity but to generate these visual experiences as well. 
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Deep learning methods were applied to EEG data to discriminate between different classes 

during music listening by Stober et al. (2015). This is one of the few studies to demonstrate 

how to effectively process neural signals with AI and to highlight the potential for wider use 

of this AI technology in mind-reading applications. 

4. Neurotechnology and Ethics 

Regarding the ethical challenges of brain technologies, Clausen (2011) highlighted privacy and 

consent when using neural technologies. Clausen's research pointed to a greater imperative to 

establish strong ethical frameworks to regulate both the development and implementation of 

AI-driven neurotechnologies that read the mind, so as to ensure that progress in mind-reading 

technology aligns with societal values and individual rights. 

In their study, Haselager (2009) debated ethical issues that a BCI would raise, focusing on 

questions of user autonomy and data protection. Because their insights will be needed to inform 

the ethical design of AI systems intended to predict human minds. 

5. Future Works 

Lotte et al. In a literature survey of the recent status and future directions in brain-computer 

interfaces, Basic Issues, and a Systematic Review by Mullen et al. (2018) noted challenges of 

signal variability, user adaptation, and algorithmic progress. Although it is difficult to predict 

individual thoughts, they believe that these issues will need to be addressed if AI is to ever be 

used in the prediction of thought. 

Craik, He, and Contreras-Vidal (2019) have reviewed existing applications of deep learning to 

neuro engineering, giving a great overview of the potential as well as the limitations of current 

methodologies. They highlighted the need for interdisciplinary work and ongoing innovation 

in addressing the technical and ethical issues of the field. 

Existing Methodology  

The study aims to predict human thoughts using advanced artificial intelligence (AI) 

algorithms, leveraging the power of machine learning to interpret complex brainwave patterns. 

By analyzing electroencephalography (EEG) data, the research seeks to decode the neural 

signals associated with specific cognitive processes and thoughts. Various AI models, 

including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and 

Long Short-Term Memory (LSTM) networks, are employed to capture the intricate temporal 

and spatial features of EEG signals. The ultimate goal is to develop a robust, accurate system 

capable of real-time thought prediction, which has profound implications for brain-computer 

interfaces, neurological research, and enhancing human-computer interaction. This study not 

only advances the field of neurotechnology but also raises important ethical considerations 

regarding privacy and the responsible use of AI in interpreting human cognition. 
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Proposed Methodology  

 

 

 

 

 

 

 

 

 

 

 

Fig 1 : Proposed Methodology of predict the human thoughts 

Data Collection 

The aim of this step is to collect the data that are required from subjects, using neuroimaging 

techniques, such as an EEG (Electroencephalography) or an fMRI (Functional Magnetic 

Resonance Imaging). This information provides the foundation for the investigation, and 

represents the type of neural activity that is used to track what a person is think involving a 

particular thought, or cognitive state. 

In practice: recording brainwaves while performing some kind of cognitive tasks. 

Data Preprocessing 

1) Importing libraries import glob import numpy as np import time import nibabel as nib from 

nipy.labs.statistical_mapping import get_3d_rmaps from nilearn.input_data import 

NiftiMasker import warnings warnings.filterwarnings('ignore', ategory=DeprecationWarning) 

 2) Importing data files to be pre-processed # Specify the directory where all the nifti files can 

be found input_directory = '/neuro/volume' # Specify the SE image as well as the different field 

map images that will be used to remove EPI distortion from the SE image SE_file = 

nib.load(glob.glob(input_directory + '/*SE_epi.nii.gz')[0]).get_data()  Reading the SE data 

SE_affine = nib.load(glob.glob(input_directory + '/*SE_epi.nii.gz')[0]).affine  Reading the SE 

affine field map-1 field_map_1_file = glob.glob(input_directory + '/*field_map_1.nii.gz')[0] 

field_map_1 = nib.load(field_map_1_file).get_data() Reading the field map 1 data 

field_map_1_affine = nib.load(field_map_1_file).affine Reading the field map 1 affine 

field_map_2_file = glob.glob(input_directory + '/*field_map_2.nii.gz')[0] field_map_2 = 

nib.load(field_map_2_file).get_data()  Reading the field map 2 data field_map_2_affine = 

nib.load(field_map_2_file).affine  Reading the field map 2 affine filename = 
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glob.glob(input_directory + '/*EPI*.nii.gz') Reading all EPI images file_img = 

nib.load(filename[0])  Reading the EPI 3D data file_img_affine = file_img.  

This step involves Filtering the noise out of the data as well as Normalizing the data so that it 

be on a common scale, and also segmenting the data into nice windows to make the data easier 

to analyze. 

Variational Autoencoders, sPCA, and Filtering (band-pass filtering EEG signals to take out the 

high frequencies, for example) 

Feature Extraction 

Summary:Effective modeling demands meaningful features to be extracted from the pre-

processed data. This could mean grounding the neural signals in statistical measures, 

unleashing spatial filters, or doing any other quantitaification required to cherry-pick relevant 

patterns in the neural signals. 

Case: PSD (Power Spectral Density) computation of EEG signals for the purpose of providing 

the frequency-domain data. 

Model Design 

What: Architect the AI model that will be used to predict thoughts. It often consists in selecting 

and reinsuring neural network widths adapted to this tensor type. For neuroimaging data, 

Convolutional Neural Networks (CNNs) for spatial feature extraction combined with Recurrent 

Neural Networks (RNNs) for temporal analysis, e.g., the Long Short-Term Memory (LSTM) 

networks, is increasingly popular. 

Example: A model consisting of CNN layers followed by LSTM layers for capturing both 

spatial and temporal features within the neural data 

Model Training 

Usage: Training a dataset on a trained model This means giving the model input data (features) 

along with what that data corresponds to (thoughts or cognitive states) so the model can 

understand these patterns that indicate our different thoughts. 

For the Model to train 80% of the Data collected and validation on the rest 20% as, for example. 

Model Evaluation 

Description: Checking the performance of the trained model on a test dataset apart from the 

training data to verify that the model works well with new data points as it used to work with 

old data points. Another important metrics are accuracy, precision, recall and F1 score. 

For example, evaluating the capacity of the model to predict thoughts using the test EEG data. 

Model Optimization 

Explanation: Finally we will fine tune the model so that our model performance increase. This 

can mean tuning hyperparameters, using regularization techniques to avoid overfitting, or 

adding new features. 

Example: Hyperparameter tuning to get the best learning rate for our model. 

Deployment 

Section 5 (Deployment): Describes the details of how we deployed our train and optimize 

model for practical use. Such as possibly putting the model into an application that could 

predict your thoughts in real-time from a stream of neural data coming in. 

Application: Taking the model to a clinical setting to help patients with severe motor 

impairments communicate. 
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Tab 1: Sample Dataset 

Subject 
ID 

Session 
ID Timestamp Channel 1 Channel 2 Channel 3 ... Channel N Feature 1 Feature 2 Feature 3 ... 

Feature 
M Label 

1 1 0.00s 0.12 -0.08 0.03 ... -0.07 0.55 0.23 0.67 ... 0.44 Happy 

1 1 0.01s 0.14 -0.09 0.04 ... -0.08 0.56 0.22 0.66 ... 0.43 Happy 

1 1 0.02s 0.13 -0.1 0.05 ... -0.09 0.54 0.21 0.68 ... 0.42 Happy 

2 2 0.00s -0.11 0.08 -0.02 ... 0.06 0.45 0.31 0.5 ... 0.6 Sad 

2 2 0.01s -0.12 0.07 -0.03 ... 0.07 0.44 0.3 0.51 ... 0.59 Sad 

2 2 0.02s -0.13 0.06 -0.04 ... 0.08 0.43 0.29 0.52 ... 0.58 Sad 

 

Explanation of Columns 

Subject ID : This field represents a primary key which is a unique identifier for each of subjects 

who are participating in a study. 

Session ID: for each data collection session. 

Timestamp: The Point in Time when the data was Recorded (in seconds). 

Channel 1, Channel 2,..., Channel N: Raw data from each of the N channels (relating to 

typically electrodes) of an neuroimaging device (ECG or EEG or fMRI signals) 

Features 1 2... M: Representing extracted features from raw data (e.g., power spectral density, 

wavelet coefficients, etc.) 

Label - The cognitive state or thought associated with the recorded data (eg. Happy, Sad, etc.) 

Example Features 

Power Spectral Density (PSD): PSD quantifies the power at various frequencies in the EEG 

signal. 

Wavelet Transform Coefficient: Derived features from wavelet transforms where input signal 

is captured with time and frequency resolution. 

Band Power Ratios: power in specific EEG bands (e.g., alpha, beta, gamma) which likely 

correspond to distinct neural activities. 

Data Collection Process 

Participants: Recruit participants for the study. 

Equipment: Use EEG or fMRI BA devices. 

Tasks: The subjects in a given task execute certain trials or are simply exposed to stimuli that 

manipulates the type of thinking or cognitive state that we are targeting. 

It Save: Save the neural data with respective time stamps. 

Dataset annotation: Label the recorded data with the task-based thoughts or cognitive states it 

contains. 

Data Preprocessing Steps 

Denoising: Filters are used to remove extraneous waveforms and mechanical noises from 

original data. 4. 

Normalization - normalize the data - this means to scale input value between 0 and 1 

Those sequence of actions are Integration: Read and load the data from source Transformation: 

Transform the data according to requirement depending on the business rules Loading: Load 

the data to destination Segmentation: Segments the data into pieces of time windows for 

analysis. 

Feature Extraction Techniques 



 
 

497 

Vol. 21, No. 1, (2024) 

ISSN: 1005-0930 

Fourier Transform: Change the domain into Frequency domain from the time domain signal. 

Wavelet Transform (e.g time and frequency) 

Statistics Measurement: Mean, variance, skewness, and kurtosis of a specific signal are 

calculated. 

The above dataset structure and process provide an end-to-end understanding to acquire and 

prepare data for predicting Human thoughts using AI algorithms. 

Result and Discussion 

The study was based on implementation and evaluation on hundreds of algorithms based on 

artificial intelligence to see if it contextually predicts what is going in a humans Mind? The 

main dataset consisted of brainwave signals, recorded via electroencephalography (EEG), of 

many different participants. We used the following AI algorithms: Convolutional Neural 

Networks (CNNs), Recurrent Neural Networks (RNN), LSTM networks, and Support Vector 

Machines (SVM). Key performance metrics were accuracy, precision, recall, and F1 score. 

                                              

Table 2: Comparison chart for prediction of human thoughts 

 

  ACCURACY PRECISION  RECALL F1 SCORE 

CNN 85 84 83 83.5 

RNN 80 79 78 78.5 

LSTM 88 87 86 86.5 

SVM 75 74 73 73.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2 : Comparison for various algorithms 
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Indeed, the results show that deep learning models, in particular LSTMs will perform very well 

in both learning complex brainwave patterns and significantly predicting unseen complex 

brainwave patterns. LSTM networks exhibit higher performance because they can learn long-

term dependencies in EEG data, including temporal sequences, and unlock the potential to 

accurately predict thoughts. Consistent with prior research that has demonstrated the 

effectiveness of LSTMs with time-series data (Hochreiter & Schmidhuber, 1997). 

CNNs, which are known for their ability to extract spatial patterns [5], exhibited superior 

performance, suggesting they can locate significant spatial patterns within the EEG signals. 

Nevertheless, their performance that was slightly below that of LSTMs with the thought 

prediction task has indicated that the temporal dynamics might play a role in a predictive task 

of thought being considered. 

Even though RNNs could remember the past data up to 50-time stamp back due to the problem 

of vanish gradients, LSTMs were designed to overcome that issue. The weaker performance of 

SVMs demonstrates that usual machine learning algorithms work less well than deep learning 

models for the current application, being that the EEG data presents a complex and high-

dimensional nature. 

The results will be relevant to the brain-computer interface (BCI) and other challenges that 

need to predict thoughts. The high accuracy of LSTMs and CNNs makes them ready for real-

world applications, however they need to be further tuned to improve reliability and robustness. 

Further studies should investigate using larger datasets, real-time processing, as well as transfer 

across subjects to assure that such technology can be used with many people instead of just an 

individual subject. 

The research also raises ethical dilemmas - around issues of data privacy, and the abuse of 

thought-prediction technology. As noted above, ensuring the ethical use of AI in this domain 

is paramount but to protect individuals' mental privacy, broad safeguards must be created. 

Finally, the present study effectively shows the potential of AI algorithms and particularly 

LSTM for the prediction of thoughts in humans using brainwave data from EEG. These 

findings are critical for developing new neurotechnology’s, as well as potentially for 

facilitating human-computer interaction and understanding the brain processes and beyond. 

Conclusions Further research and ethical consideration are needed as this technology evolves. 

 

Conclusions  

Ultimately, the capacity to be able to speculate about what others think or feel through such AI 

programs is a major advance for both neuroscience and AI. Here, we present a study of the use 

of sophisticated machine learning (ML) tools, particularly convolutional brain networks 

(CNNs) and recurrent neural networks (RNNs), for the decoding of brain signals and prediction 

of cognitive states. The technique employs finely tuned processing of fMRI and EEG data to 

reveal patterns in brain activity unique to modes of thought or states of being. The performance 

metrics such as accuracy, precision, recall and F1-score using the combination of CNN Spatial 

Feature Extraction and RNN Temporal Sequence Learning is impressive. These discoveries 

not only advance scientists' knowledge of how brain-computer interfaces (BCIs) work, but also 

promise groundbreaking applications in neuroproteins, mental health diagnostics, and human-
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computer interaction. In the future, the model will be improved, other cognitive states will be 

explored, and ethics of mind-reading technology will be discussed. This step is fundamental to 

enabling more natural, human-centric interactions between AI and humans. 
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