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Abstract 

Machine learning has numerous applications in audio-signal classification. It helps to 

find and sort different kinds of sounds, such as talking, music, and noise, from the world 

around us. Before applying machine learning to classify audio signals, the audio is first 

converted into a format that the computer can understand. Sound is shown using methods 

such as pictures of sound waves, special numbers called Mel-frequency Cepstral coefficients 

(MFCC), a method of predicting sound patterns called linear predictive coding, and breaking 

down sound into tiny parts using wavelet decomposition. Once the audio has been formatted 

appropriately, it can be used as input for a machine learning (ML) model intended for 

classification. This paper introduces an approach utilizing a Recurrent Neural Network 

(RNN) model integrated with Finite Impulse Response (FIR) filtering. This combination aims 

to effectively detect and classify various listening conditions, particularly tailored to 

individuals with hearing impairment. The pre-trained RNN model accurately categorizes 

audio, while dynamic FIR filtering enhances audio quality based on the predicted 

environment, tailored to address the needs of hearing-impaired individuals. This model 

enables the detection and classification of diverse listening conditions with a training 

accuracy of 98.50% and a testing accuracy of 94.97%, offering personalized filtering to 

enhance auditory experiences for hearing-impaired individuals. 

Keywords: Detection, Classification, Environmental Sound, Machine Learning Model (ML), 

Recurrent Neural Network (RNN), FIR filter and Hearing-Impaired Individuals. 

 1. Introduction 

There are numerous types of audio classification, such as speech, music, acoustic 

data, natural language, and ambient sounds. The ML-model excels in audio classification 

because it identifies the unique properties of audio samples and uses that knowledge to 
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classify them into multiple categories. A sound signal is used as input for the audio 

classification process, where its features are retrieved and allocated to the appropriate output 

category [2-4]. 

Hearing impairment, a prevalent sensory disability affecting millions of people 

worldwide, significantly affects individuals' ability to perceive and interact with their 

acoustic environment. Recognizing the importance of addressing the unique auditory 

challenges faced by hearing-impaired individuals, this study introduces a pioneering 

approach to detect and classify diverse listening conditions using advanced technologies. By 

leveraging the capabilities of Recurrent Neural Network (RNN) models and finite impulse 

response (FIR) filtering, this research aims to provide tailored solutions that enhance auditory 

experiences.  

The sensory landscape of hearing-impaired individuals is marked by various 

environmental factors, each presenting distinct acoustic characteristics that influence their 

ability to comprehend and engage with auditory stimuli. From quiet settings to bustling urban 

environments, the diversity of listening conditions poses significant challenges for 

individuals with hearing impairments, impacting their communication, social interaction, and 

overall well-being. Traditional assistive devices and interventions, although effective to some 

extent, often fail to adequately address the needs arising from this complexity. 

The use of assessment measures is crucial for evaluating classification systems like 

deep learning. These metrics provide a complete set of indicators for measuring the 

performance of deep learning models. These are crucial in measuring how effectively a 

model absorbs information from its training data, as well as identifying areas for development 

to maximize its efficacy[1], 

 

Fig.1: Machine learning model for Environmental Sound Classification (ESC) 

Fig.1 shows illustration of a machine learning model designed for ESC. To create a 

robust audio detection and classification system that takes advantage of the diverse audio data 

available in the NOIZEUS and Urbansound8K datasets [15][16]. The process begins with 

meticulous data pre-processing, which involves carefully curating and partitioning audio files 
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into distinct sets for training and testing. The audio files were then transformed into 

spectrogram images, which allowed us to capture the temporal and frequency characteristics 

of the audio signals effectively.  

Furthermore, visualization approaches such as confusion matrices are used to look 

further into the model's behaviour, discover patterns of misclassification, and iteratively 

improve our methodology.  

2. Related Work 

Veena et al. [5] developed a sound classification system for hearing-impaired 

individuals (SCSHIP). It combines IoT and Machine Learning to analyze live audio and send 

immediate alerts. This system fills a gap in connectivity for the hearing-impaired, promising 

to improve their sense of surroundings and societal integration [25]. 

Khamparia et al. [6] used deep-learning networks to classify environmental sounds 

using spectrogram images. They trained CNN and TDSN models on datasets. This approach 

shows encouraging prospects for crafting proficient sound classification and recognition 

systems, shedding light on the utilization of spectrogram-based techniques in the realm of 

deep learning. 

Su et al. [7] addressed the limitations of existing deep learning models for ESC by 

proposing two combined features to enhance representation. Then CNN model is introduced 

to leverage these aggregated features, significantly improving the performance. 

Experimentation revealed that our approach achieves a classification accuracy of 97.2% on 

UrbanSound8K datasets, surpassing previous models and demonstrating its efficacy in 

environment sound categorization tasks. 

Zhao et al. [8] created a deep-learning method that reduces room reverberation and 

background noise. They improved the voice clarity of hearing-impaired individuals in loud 

surroundings by training a DNN to estimate an optimum ratio mask. The algorithm also 

helped normal-hearing listeners by approaching or matching the voice clarity of raw audio. 

This study represents a big step forward in applying deep learning to improve speech 

comprehension for the hearing impaired in everyday situations [26]. 

Mushtaq et al. [9] proposed combining DCNN for ESC. They also used regularization 

and data augmentation to boost performance. They employed log-Mel features on 

supplemented data, achieved the best accuracies: 94.94%. These data show how effective 

their strategy is in addressing sound categorization issues. 

Mushtaq et al. [10] developed a new method to classify environmental sounds using 

Convolutional Neural Networks (CNN) with smart tricks to improve the data, based on Mel 

spectrograms. They tried different CNN models, such as those with seven layers and nine 

layers built from scratch, as well as some techniques where they used parts of already trained 

models, freezing the early layers, and then fine-tuning them to fit their task. Instead of simply 

changing the images as usual, they came up with ways to improve the audio clips. The results 

showed that their approach worked well, with high accuracy rates on all datasets. Models 

such as ResNet-152 and DenseNet-161 performed exceptionally, with accuracy 99.49%. 

These findings indicate a significant step forward in the accurate ESC. 

Hadi et al. [11] advocated the use of machine learning to detect different types of 

urban noise. They used four supervised algorithms on a dataset They employed MFCC to 
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extract information from the recordings. The results revealed that all algorithms classified 

noise with accuracies ranging from 95% to 100%. It is vital to note that the recorded noise 

levels surpassed the World Health Organization's recommendations, potentially endangering 

people's health. 

Toffa et al. [12] proposed a unique method known as a local binary pattern (LBP) 

with audio features. They adapted LBP, which is generally used for image identification. 

When compared to standard features, they discovered that LBP characteristics outperformed 

them. Although not the latest technology, this method offers speed advantages over CNN 

methods and is preferable with limited data or computing resources. 

Demir et al. [13] introduced a unique method for categorizing environmental noises 

based on deep features extracted from fully connected layers of a Convolutional Neural 

Network. They trained the model from start to finish with spectrogram images, and then 

combined these fully connected layers to form a feature vector. When they tested their 

approach, they discovered that it was quite effective with accuracies of 96.23%.  

Z. Chi et al. [14] presented a novel deep convolutional neural network. This network 

employs mixed spectrograms, notably Log-Mel and Log-Gammatone spectrograms, to 

provide more detailed information than utilizing only one type of spectrogram. Their network 

was made up of blocks with three layers for convolution and one layer for pooling to extract 

key characteristics from the combined spectrograms. They employed tiny filters in each 

convolution layer to keep the network deep but not overly complicated, using average 

pooling to preserve the information. When they tested their network on the datasets, they got 

classification accuracies of 83.8%. This suggests that their strategy is effective for 

categorizing environmental sounds. 

The reviewed papers collectively demonstrate remarkable progress in environmental 

sound classification (ESC). These studies introduced innovative approaches such as IoT 

integration, data augmentation, and deep feature extraction from CNNs, significantly 

improving the classification accuracy and system robustness. Despite these advancements, 

challenges persist in integrating Finite Impulse Response (FIR) filtering with recurrent neural 

networks (RNNs) for ESC tasks. Further research is needed to explore this integration and its 

potential to enhance the feature extraction and classification accuracy in noisy environments. 

Although recent advances in ESC have yielded significant improvements, challenges 

remain in integrating FIR filtering with RNNs. This integration can enhance feature 

extraction and classification accuracy by capturing temporal dependencies and filtering out 

noise from audio signals. However, the integration of FIR filtering with RNNs requires 

further exploration to address existing gaps and improve the ESC performance in dynamic 

environments. 

3. Environmental Sound Detection and Classification Using Integrated 

RNN Model with FIR Filter 

This section introduces Environmental Sound Detection and Classification using an 

Integrated RNN Model with FIR Filter, a method proficient in categorizing environmental 

sounds accurately. By integrating the RNN model and FIR filter, it offers a comprehensive 

approach to analyzing environmental sounds, leveraging the RNN's sequential data 

processing for capturing temporal patterns and the FIR filter's feature extraction and noise 

reduction capabilities. This combined approach enhances classification precision by focusing 
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on crucial audio characteristics, resulting in a robust and efficient environmental sound 

classification system that can handle diverse contexts effectively. 

 

Fig.2: Environmental Sound Detection and Classification (ESC) using Integrated RNN Model 

with FIR Filter. 

Fig. 2 illustrates the process of ESC using an RNN Model with FIR filter. The figure 

depicts the architecture of the integrated model, including how the sound data are inputted, 

processed through the RNN layers, and filtered using FIR filters to improve classification 

accuracy.  

This model serves as a versatile tool for detecting and classifying diverse listening 

conditions tailored to individuals with hearing impairment. It imports the essential libraries 

for audio and machine learning. The data directories for various environments were defined 

to access the audio files corresponding to each condition. Furthermore, a pre-trained RNN 

model was loaded for accurate audio classification. Key functions are implemented to 

calculate the FIR filter coefficients, apply filters to audio data, and display filter information.  

The FIR filter coefficients were calculated based on the sample rate, target environment, and 

filter order. The filter order was calculated as follows: 

Filter order =int (
4 ∗ sample rate

Desired Transition Width
)               1 

The model constructs an intuitive graphical user interface using ipywidgets, enabling 

users to upload audio files and classify the listening conditions. Upon uploading an audio file 

and triggering the classification process, the model predicts the environment type using the 

RNN model and applies an FIR filter accordingly. To enhance flexibility, specific FIR filter 

coefficients were assigned to each environment type, allowing for tailored filtering based on 

the predicted conditions. Overall, this model provides a seamless and informative experience 

for individuals to understand and adapt to varying listening environments, specifically 

catering to the needs of those with hearing impairment. 

3.1 Data Collection 
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A diverse dataset of audio recordings encompassing various listening environments 

relevant to hearing-impaired individuals, such as quiet settings, car environment, cocktail 

environment, restaurant environment, street environment, airport environment, train station 

environment, group setting environment, reverberant spaces environment, and telephone 

conversations from the NOIZEUS corpus database and UrbanSound8K dataset, is available 

on Kaggle [15-16][19]. 

3.2 Data Pre-processing 

MFCCs are derived from a logarithmic transformation of the power spectrum, 

followed by a linear cosine transformation on a scale called the mel frequency [2] [20-

21][23].  The process of computing the MFCCs involves several steps. First, the signal was 

enhanced to produce high-frequency components. Then, it is broken into overlapping pieces, 

each treated with a window function to avoid mixing the frequencies. Next, FFT was used to 

find the frequency spectrum for each piece. After determining the magnitude of the FFT, it 

was squared to obtain the power spectrum. This spectrum was then adjusted to the mel-

frequency scale by using a special set of filters. The resulting mel-frequency spectrum was 

converted to a logarithm. Finally, the Discrete Cosine Transform (DCT) was applied to 

obtain a set number of MFCCs from the logarithm of the mel-frequency spectrum. 

3.3 RNN- Model Architecture 

Fig. 3 presents a visual representation of the architecture of a RNN model. It may 

depict the various layers of the RNN, including the input, hidden, and output layers, as well 

as the connections between these layers. In addition, the figure highlights specific features of 

the RNN architecture, such as recurrent connections that allow the network to retain 

information over time. Overall, Fig. 3 provides insight into the internal workings and design 

of the RNN model, offering a visual guide to its architecture. 

 

 

Fig.3: RNN-Model Architecture 

RNNs learn from sequential data, retaining information over time to capture temporal 

relationships [22] [27]. They excel in tasks such as audio signal classification and identifying 

patterns in sound recordings to differentiate between speech, music, and other sounds. RNNs 

extract features such as frequency and amplitude to understand the content of audio signals, 

making them valuable for tasks such as audio classification [1][3][5]. 
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RNN is created utilizing the Keras package and a Tensor Flow backend. It begins by 

creating a sequential model, in which layers are added consecutively. The first layer had 128 

units and used a ReLU activation function. LSTMs can handle data sequences, which is 

beneficial for applications like sorting audio or time-series data. To prevent overfitting, a 

Dropout layer with a dropout rate of 0.2 is introduced, which turns off 20% of the neurons 

during training. The network was then made more complicated by adding a Dense layer with 

128 units with ReLU activation. Finally, there is another thick layer with ten units and a 

softmax activation function, which is ideal for categorizing input into one of ten possible 

groups. This architecture effectively detects patterns in data over time and learns to 

appropriately classify them [24]. 

3.3.1. Model Training 

In this segment, the defined RNN model was trained using augmented data for 30 

epochs, with a batch size of 32. During training, the model's performance was evaluated 

using validation data. Additionally, the early_stopping callback was employed to monitor the 

validation loss, allowing training to halt if no improvement was observed for five consecutive 

epochs, while ensuring that the best-performing weights were retained. This aids in 

preventing overfitting and improves the generalization capability of the model. 

3.3.2 Evaluation and Fine-Tuning 

This code segment was used to evaluate the performance of the trained RNN model 

on the test data. First, a prediction method is applied to the test data using the trained model. 

This generated the predicted class probabilities for each input sample. Next, the argmax 

function was used to determine the predicted class labels by selecting the index with the 

highest probability for each sample along the second axis of the predicted probability array. 

This resulted in a list of predicted class labels corresponding to the test samples. These 

predicted labels can then be compared with the true labels to assess the accuracy and 

performance of the model on the unseen data [2]. 

Evaluate the essential metrics, including accuracy, precision, recall, and F1-score, to 

measure the model's capability to accurately identify and categorize various environments. 

Utilize insights obtained from this evaluation phase to adjust the model parameters and 

architecture, with the goal of enhancing the overall classification accuracy and resilience. 

This methodology can be used to develop a robust and effective system for detecting 

and classifying diverse listening conditions in hearing-impaired individuals using an RNN 

model. 

Table 1. Dimension and operations of the proposed model. 

Layer Type     Output Shape     Parameters      

LSTM (None, 128)      4 * ((input_dim + 1) * 128 + 128 * 

128) 

Dropout        (None, 128)      None 

Dense          (None, 128)      (128 + 1) * 128              

Dense       (None, 10)       (128 + 1) * 10               
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This table 1 outlines the architecture and operations of the proposed model, detailing the 

output shape and parameters of each layer. 

The model begins with a Long Short-Term Memory (LSTM) layer, which outputs a 

tensor with shape (None, 128). The number of parameters for this layer is calculated using a 

formula specific to the LSTM layers, accounting for the input dimension and number of units 

(128 in this case). 

Following the LSTM layer, a dropout layer was applied, maintaining the same output shape 

of (None, 128) while having no trainable parameters. Subsequently, two dense layers were 

added. The first dense layer produces an output tensor with a shape of (None, 128), with the 

number of parameters determined by the formula: (128 + 1) × 128. Similarly, the second 

dense layer generates an output tensor of shape (None, 10), with the number of parameters 

calculated using the formula (128 + 1) × 10. 

Overall, this table provides a clear overview of the model's structure and the 

computations involved in each layer, helping us to understand the model's architecture and 

parameterization in detail. 

3.4 FIR Filtering 

In this section, important functions designed to improve how Finite Impulse Response 

(FIR) filters work with audio are described. FIR filters are tools used to fine-tune specific 

aspects of sounds in different listening scenarios. 

The "filter order" is a critical factor in FIR filters. This determines the length and 

complexity of the filter. These functions determine the best settings for the filter by 

considering factors such as the speed at which the sound was recorded, the part of the sound 

that needs adjustment, and the length of the filter. By carefully analyzing these factors, these 

functions ensure that the filter performs optimally in various listening situations. 

Furthermore, the filter order affects the effectiveness of the FIR filter when applied to 

sound. These functions smoothly integrate the FIR filter into sound using predefined settings, 

taking into account details such as the characteristics of the sound itself and its recording 

speed. They utilize a specialized function called "scipy.signal.lfilter" to accurately execute 

this process. Choosing an appropriate filter order enhances the model's ability to accurately 

analyze and categorize sounds, thereby improving its performance across different listening 

environments. 

The FIR filter was seamlessly applied to the sound within the "apply_fir_filter 

function. This function considers essential factors, such as sound data, filter settings, and 

recording speed, to ensure the precise application of the FIR filter. By leveraging the 

"scipy.signal.lfilter function," it guarantees the accurate integration of the FIR filter into the 

sound signal. This refinement ultimately enhances the capacity of the model to effectively 

interpret and categorize sounds across diverse listening contexts. 

4. Results and Discussions 

The NOIZEUS corpus was created to help researchers compare speech-improvement 

methods. Inside this database, there are 30 sentences from IEEE spoken by three men and 

three women. These sentences were mixed with different real-life noises. These noises were 

obtained from the AURORA database [15-16][19]. 
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The UrbanSound8K dataset, found on Kaggle, contains over 8,000 audio recordings 

representing diverse urban sounds. Across ten sound classes, ranging from street noise to 

mechanical sounds, it provides valuable resources for audio classification and urban sound 

analysis research [17]. 

Table 2: Dataset Distribution for Environmental Sound Classification - Training and Testing 

Files. 

S.No. Environment Type Training 

(Number of 

Audio files) 

Testing 

(Number of Audio 

files) 

1 Quiet Environment 2,000 400 

2 Car Noise Environment 100 10 

3 Cocktail Environment 100 10 

4 Restaurant Environment 100 10 

5 Street Environment 100 10 

6 Airport Environment 100 10 

7 Train Station Environment 100 10 

8 Group Setting Environment 140 14 

9 Reverberant Spaces 

Environment 

50 05 

10 Telephone Conversations 100 10 

Total No. of Audio Files 2,890 489 

 

The table 2 provides a brief overview of the various environmental kinds, as well as 

the number of audio files accessible for training and testing. It describes a variety of 

circumstances, including quiet environments, car noise, cocktail environment, restaurant 

environment, street environment, airport environment, train station environment, group 

settings environment, reverberant spaces environment, and telephone talks. Each environment 

type is identified by the quantity of audio recordings available for training and testing, 

allowing audio processing algorithms or models to be evaluated and developed. There are a 

total of 2,890 audio files accessible for training and 489 for testing, allowing for thorough 

investigation and evaluation across a wide range of acoustic settings. 

 

 

Table 3: Performance Metrics for Environmental Sound Classification 

Environment Type Precision Recall F1-Score Support 

Quiet Environment 1.00 1.00 1.00 401 
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Car Noise Environment 0.96 0.96 0.96 24 

Cocktail Noise 

Environment 

1.00 1.00 1.00 14 

Restaurant Noise 

Environment 

1.00 0.75 0.86 16 

Street Noise Environment 0.94 0.76 0.84 21 

Airport Noise Environment 0.64 0.86 0.73 21 

Train Station Noise 

Environment 

0.63 0.67 0.65 18 

Group Setting Environment 0.89 0.89 0.89 28 

Reverberant Spaces 

Environment 

0.79 0.69 0.73 16 

Telephone Conversations 

Environment 

0.81 0.94 0.87 18 

Accuracy - - 0.95 577 

Macro Average 0.87 0.85 0.85 577 

Weighted Average 0.95 0.95 0.95 577 

 

Table 3 presents the performance metrics for the environmental sound classification 

across various types of listening conditions. Each row corresponds to a specific environment 

type, while the columns display precision, recall, F1-score, and support (the number of 

samples) for each category. 

Precision indicates how many of the predicted positive results were actually correct, 

out of all the positive results the model predicted. This shows how well the model can spot 

instances of a specific type of environment without mistakenly labeling other things. Recall, 

on the other hand, tells us how many of the actual positive instances the model managed to 

find out of all the positive instances there actually were. This shows the sensitivity of the 

model for picking up instances of a specific environment type. 

Precision = 
True Positive

True Positive+False Positive
   =  

TP
TP+FP

                 2 

Recall = 
True Positive

True Positive +False Negative
 = 

TP

TP+FN
                                3 

The F1-score is like a blend of precision and recall, finding a balance between them. 

This is is especially helpful when some types of things are more common than others in the 

data. Support indicates the number of times each type of thing actually appeared in the 

dataset. This helps us better understand precision, recall, and F1-score by providing context. 
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F1-score = 
2(Precision ∗ Recall)

Precision + Recall
 = 

TP 

TP + 1/2(FP + FN) 
                4 

For instance, in the "Quiet Environment" category, we observed perfect precision, 

recall, and an F1-score of 1.00, indicating that the model correctly classified all instances of 

quiet environments without any false positives or negatives [24]. However, in environments 

like "Restaurant Noise" and "Street Noise," where there may be more variability and overlap 

in audio characteristics, we see slightly lower scores, particularly in recall, indicating that the 

model may miss some instances of these environments. 

Furthermore, the table includes the overall accuracy as well as the macro-average and 

weighted-average scores. Accuracy shows how correct the model is overall, considering all 

categories. The macro-average and weighted-average metrics provide a summarized view of 

precision, recall, and F1-score for all categories, considering either equal importance to each 

category or taking into account how common each category is. These summarized metrics 

provide a thorough evaluation of the performance of the model on the entire dataset, 

considering both specific categories and overall performance. 

       Accuracy = 
Number of correct predictions 

Total number of predictions 
= 

TP + TN 

TP + TN + FP + FN
                               5 

Where TP signifies True Positives, TN denotes True Negatives, FP represents False 

Positives, and FN stands for False Negatives. 

Table 4: RNN Model Training and Testing Accuracy 

RNN Model Accuracy 

Training 98.50% 

Testing 94.97% 

 

Table 4 shows the performance metrics of an (RNN) model, detailing its accuracy 

during both the training and testing phases. During the training process, the RNN model 

achieved an impressive accuracy of 98.50%, indicating its proficiency in correctly classifying 

audio samples within the dataset on which it was trained. This high accuracy rate underscores 

the ability of the model to effectively learn and capture patterns present in the training data, 

enabling it to make accurate predictions during the training phase. 

Moving on to the testing phase, where the model's performance was evaluated on 

unseen data, an accuracy of 94.97% was observed. Although marginally lower than the 

training accuracy, this testing accuracy remains notably high, signifying the robustness and 

generalization capability of the model. Despite being exposed to new and unseen audio 

samples, the RNN model continued to exhibit strong predictive power, accurately classifying 

the majority of the test data. This indicates that the model has effectively learned relevant 

features and patterns from the training data and is capable of applying this knowledge to new 

instances, making it a reliable tool for detecting and classifying diverse listening conditions, 

which is particularly beneficial for individuals with hearing impairments. 

 In the confusion matrix as shown in  Fig 4, every row shows the real categories, and 

each column shows the estimated model. The numbers in the cells of the matrix indicate the 
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number of times the model put something in each combination of real and guessed categories. 

This helps us to carefully examine how well the model is doing, such as how often it gets 

each category right and where it makes mistakes. 

 

 

Fig.4: Confusion matrix  

 

 

Fig.5: Training and Validation Accuracy vs Epochs 

Fig. 5 displays the relationship between the training and validation accuracies over the 

course of the training epochs. This illustrates how the accuracy of the model changes as it 

undergoes training, with separate lines or curves representing the accuracy of the training and 
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validation datasets. This visualization allows for the assessment of the model performance 

and generalization ability throughout the training process. 

The training accuracy of 98.50% and testing accuracy of 94.97% represent the 

performance of the Recurrent Neural Network (RNN) model after training it for 30 epochs. 

During the training process, the model passes through the training data multiple times, which 

are called epochs. In this case, it underwent 30 epochs. Each time it goes through the data, the 

model tweaks its internal settings (such as weights and biases) based on what it has learned, 

trying to get closer to the correct answers. The training accuracy, which is 98.50%, shows 

how often the model obtained the correct answers when predicting the labels of the training 

data after all epochs. This high accuracy indicates that the model has learned well and 

remembered patterns from the training data. 

The real measure of how well the model works comes when testing it with new data 

that has not been seen before. This occurs during the testing phase. The testing accuracy, 

which is 94.97%, shows how often the model obtains the correct answers when it is asked 

questions about this new data, which is different from what it is trained on. This means that 

the model does es not simply repeat what it learned from the training data; it also determines 

how to give good answers to new questions. 

It is common for the testing accuracy to be slightly lower than the training one. This 

typically occurs because of overfitting or noise in the training data. Overfitting occurs when a 

model is too good to pick up tiny details or random patterns in the training data that do not 

really matter. This can cause it to not work as well when it asking questions about new data. 

However, the relatively small difference between the training and testing accuracies (3.53%) 

suggests that the model is well-generalized and effectively discriminates between different 

classes, even when presented with new examples. Overall, the model demonstrated a strong 

performance after training for 30 epochs, achieving high accuracy on both the training and 

testing datasets. 

 

Fig.6: Training and Validation Loss vs Epochs 

Fig. 6 depicts the variations in training and validation losses at several epochs during 

the training process. This visualization shows how the loss, which reflects the gap between 

the predicted and actual values, changes as the model learns from the training data. The 
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comparison of training and validation loss assesses the model's capacity to generalize to new, 

previously unknown data. 

When evaluating the efficacy and learning curve of machine learning models, like 

recurrent neural networks (RNNs), over a 30-epoch period, training and validation loss 

metrics provide critical information. As the difference between the true and predicted labels 

in the training dataset is represented by the training loss, the model's goal is to minimize it. 

Decreasing the training loss indicates effective learning of the underlying patterns. Similarly, 

the validation loss, computed on unseen data, should ideally decrease over epochs, reflecting 

the model's ability to generalize its learned patterns. Consistent decreases in both training and 

validation losses signify effective learning and generalization, ensuring the accuracy of the 

model on new data. 

 

 

Fig.7: Predicted Environment is Quiet Environment 
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Fig.8: Predicted Environment is Car Noise Environment 

 

Fig.9: Predicted Environment is Restaurant Noise Environment 

 

Fig.10: Predicted Environment is Street Noise Environment 
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Fig.11: Predicted Environment is Airport Noise Environment 

 

Fig.12: shows the Predicted Environment is Train Station Noise Environment 
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Fig.13: Predicted Environment is Group Setting Environment 

 

Fig.14: Predicted Environment is Reverberant Environment. 
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.  

Fig.15: Predicted Environment is Telephone Conversations Environment 

 

 

 

 Fig. 7-15 reveals that the Recurrent Neural Network (RNN) model identified the 

environment as “Quiet Environment, Car Noise Environment, Restaurant Noise Environment, 

Street Noise Environment, Airport Noise Environment, Train Station Noise Environment, 

Group Setting Environment, Reverberant Environment, and Telephone Conversation 

Environment, respectively. This decision relied on a Finite Impulse Response (FIR) filter 

with 256 taps and a FIR filter order of 256. By meticulously examining the audio signals with 

the assistance of the FIR filter, the RNN model accurately labelled the environment with the 

respective environment type. This demonstrates how combining advanced signal processing 

techniques with deep learning methods can effectively classify environments. 

5. Conclusion and Future Scope  

This study proposes an innovative approach that combines recurrent neural network 

(RNN) models with finite impulse response (FIR) filtering to effectively detect and classify 

diverse listening conditions experienced by individuals with hearing impairment. By 

leveraging machine learning and signal processing techniques, this methodology provides a 

comprehensive solution to address the unique auditory challenges encountered by this 

population. Through the integration of RNN models, which are capable of capturing temporal 

dependencies in sequential data, and dynamic FIR filtering, which enhances audio quality 

based on predicted environments, this model accurately categorizes diverse listening 

conditions with a training accuracy of 98.50% and testing accuracy of 94.97%. This model 

empowers individuals with hearing impairment by offering personalized solutions that 

enhance their auditory experiences and improve their overall quality of life, fostering 

inclusivity and accessibility in auditory environments. 

Future research opportunities for this method include investigating advanced model 

architectures such as attention-based RNNs or transformer models to improve classification 

performance and robustness. Developing real-time processing capabilities and customizable 

adaptation approaches could allow for more tailored responses to individual user needs. 
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Integrating multimodal sensory signals and conducting long-term evaluation studies can 

improve the user experience and provide information about the system's long-term 

effectiveness in real-world scenarios. This continuing work seeks to enhance assistive 

technology for people with hearing loss, ultimately improving accessibility and quality of life 

for this population. 

Abbreviations  
ML: Machine Learning 

MFCCs: Mel-Frequency Cepstral Coefficients 

RNN: Recurrent Neural Network 

FIR: Finite Impulse Response  

ESC: Environmental Sound Classification 

FFT: Fast Fourier Transform 

LSTM: Long Short-Term Memory  
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