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  ABSTRACT  

 
 

The Disease known as ‘Hidimundige/ Crown -Choke 

Disease seen in Arecanut Farm has been spreading across 

the areas of Channagiri, Davanagere district of 

Karnataka, India over the past 5-6 years. The disease has 

caused a decrease in the yield of the area which is related 

to the downpour of the economic growth of the country 

as Arecanut is a cash crop. Karnataka’s Channagiri 

district is “The Arecanut Hub” of India and is responsible 

for uplifting the economy and the export business of 

India. The paper focuses on the study of the Disease 

Severity  determination of this area. Comparisons of the 

Disease Severity for the dataset collected in the month of 

February 2023 is calculated with that of the dataset 

collected during the year 2015-16. The comparison was 

again subdivided based on the age groups of the plants. 

The age group of below 6 months, less than 5 years, 

between 5 – 7 Years, above 7 and within 10 years, above 

10 years to 15 years and 25 years were taken into 

consideration for the study. The features considered are 

spectral reflectance and vegetation indices. The 

classification models were trained with the samples taken 

where training and testing ratio were kept in the range of 

80:20. Variation in the spectral reflectance was mainly 

seen in the 500 nm to 2000 nm range.  Various 

classification algorithms were evaluated on the samples 

collected to get the better accuracy of classification. 

LightGBM (Light Gradient Boosting Machine) showed 

better classification with respect to the disease severity in 

terms of all classification parameters. The data taken of 

the site are Hyperspectral images of leaf samples from 

different sites.  
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1. INTRODUCTION  

 Cash crops grown in different parts of the world have been contributing to the economy of 

any county. Number of cash crops have been playing vital role in determining the economy 

status of the country. There are large number of cash crops that one can think of in this 

regard.  Arecanut is one of the cash crops grown in many parts of the world. The 

contribution of this Arecanut crop in India is vast, many of the places in India the Arecanut 

crop is seen. Extensive usage of the crop is done by large set of people in India and 

considered to be linked to Indian religious practices. 

India is one of the largest producers and consumers of Arecanut. Major states contributing 

to the large production are Karnataka, Kerala, Assam and Tamil Nadu, Meghalaya, and 

West Bengal. Among the Arecanut producing states of India, Karnataka’s share is around 

78%. Channagiri is a small village in Davanagere district of Karnataka is famously known 

as “Arecanut Hub”. Davanagere is the district with Arecanut grown on 36,000 hectares - 

stood sixth in Arecanut production after Dakshina Kannada, Uttara Kannada, Shivmoga, 

Hassan / Chikmagalur and Kodagu of Karnataka state.  

Ninety percent of the area covered by Arecanut crops is Channagiri. There are variations of 

this planation observed. The crop yields a profit that meets the farmer's daily necessities. 

Currently, however, several illnesses have harmed crops, which has impacted crop 

productivity. Preventing plant diseases is dependent on the assessment of the disease 

severity. Estimating different elements will contribute to the continued spread of these 

diseases. Farmers will be able to comprehend the fundamental cause of the diseases' spread 

with the aid of prompt therapies.  

In agricultural Hyperspectral image analysis, remote sensing is clearly important. The goal 

of the study is to determine the index of diseases brought on by distinct factors. Twenty 

samples that were gathered from diverse locations are used in the study. The age groups of 

the samples vary.  

Hyperspectral imaging is a powerful technique that can be utilized in the detection and 

monitoring of plant diseases, including those affecting Arecanut plants. It involves 

capturing images of an object or scene at numerous and contiguous spectral bands, 

providing detailed spectral information for each pixel in the image.  

Hyperspectral imaging and deep learning algorithms can be used to monitor the health of 

Arecanut plants and identify and evaluate infections, dietary deficits, and other stressors. 

Here's how to use this combo strategy: 

(i)  Hyperspectral Imaging: Using a broad range of wavelengths, hyperspectral imaging 

provides precise spectral information on Arecanut plants. It is possible to discover disease 

signs or nutritional imbalances as well as minor changes in plant health by analysing the 

reflectance or absorption patterns in the hyperspectral data. Rich sources of information 

regarding the physiological and metabolic state of plants can be found in hyperspectral 

data. 

(ii) Data Acquisition and Preprocessing: Specialized sensors or cameras that record the 

reflected light from the plants at many narrow spectral bands are used to obtain 

hyperspectral images of Arecanut plants. To ensure high-quality input for further analysis, 
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the acquired data is pre-processed to eliminate noise, adjust for atmospheric impacts, and 

improve the spectrum information. 

(iii) Training Data Collection: Hyperspectral photos of Arecanut plants are combined 

with ground truth data about their health to create a labelled dataset. This dataset is 

essential for teaching deep learning algorithms to reliably identify and categorize various 

medical disorders. 

(iv) Feature Extraction: Relevant characteristics can be automatically extracted from the 

Hyperspectral data using deep learning methods like convolutional neural networks 

(CNNs). These algorithms are trained to identify spectral signatures and patterns linked to 

various Arecanut plant health concerns. The labelled dataset is used to train CNNs so they 

can acquire discriminative features for additional health indicators and disease 

identification. 

(v) Model Training and Validation: Using the hyperspectral data and associated health 

labels, the deep learning model is trained on the labelled dataset. The algorithm gains the 

ability to categorize Arecanut plants as healthy, diseased, or nutrient-deficient. To evaluate 

the trained model's accuracy and capacity for generalization, it is validated using an 

independent dataset. 

(vi) Health Monitoring and Disease Detection: Hyperspectral photos of Arecanut plants 

can be used to build and verify a deep learning model that will be used to monitor health 

and identify diseases in the plants. To provide real-time information about the health status 

of plants and the presence of illnesses or other stress factors, the model can identify new, 

unseen photos. 

This method allows for the precise and automated identification of diseases affecting 

Arecanut plants as well as other health problems by fusing Hyperspectral imagery with 

deep learning algorithms. It makes early diagnosis easier, which enables prompt 

intervention and management strategies to be put in place, reducing the negative effects of 

illnesses on plant yield.  

 

 

2. LITERATURE SURVEY  

In the paper [1] indicated how plant disease identification has helped in the quick 

development of Hperspectral imaging technologies and unmanned aerial vehicles (UAVs). 

Conventional manual inspection methods have superseded by UAV-borne Hyperspectral 

remote sensing (HRS) systems with high spectral, spatial, and temporal resolutions. This is 

because the technologies enable more precise and economical crop assessments and plant 

characteristics. The purpose of this work is to present a summary of the research on deep 

learning algorithms-based HRS for illness diagnosis. This study introduced the 

fundamentals of deep learning-based classifiers, Hyperspectral imaging, and aerial 

surveying with UAVs. As to investigate the viability of carrying out such study, 

generalizations on workflow and methodologies were established from prior research. 

Deep learning models outperform conventional machine learning algorithms in terms of 

accuracy, according to research findings. Lastly, some other difficulties and restrictions 

pertaining to this subject are discussed. 

Data Acquisition: Flight planning and the construction of a Hyperspectral system based on 

UAVs are involved in data acquisition. Since most Hyperspectral camera systems require a 

microprocessor to function, UAV platforms must be able to transport payloads steadily and 

safely. 

Ground Survey: After the experimental site has been determined, a ground survey is still 

another essential step. Validation and matching between the diseased plant on the obtained 

photos and the diseased plant on the actual site are required. Using the sample's GPS 
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location to mark its position is another workable solution. By analysing the sample 

morphology, the infection phases can be ascertained. The contaminated plants were 

identified by a ground survey, which also used to create a ground-truth dataset. Based on 

factors such as resin secretion, growth vigor, and needle colour, the PWD infection was 

classified into multiple stages.  

Pre-processing: ArcGIS, Agisoft Metashape, PIX4Dmapper or ENVI are some examples 

of software that can be used for georeferencing in Pre-Processing stage.  

Feature Extraction: Various colours may represent the sickness. Beyond the visible light 

bands, Hyperspectral scans show additional variations. Furthermore, spectral data can be 

used as input variables in a classifier model that is developed to identify sick areas. The 

model can discriminate between samples that are healthy and samples that are sick because 

it has a unique spectral signature. 

Classification: By designating each band as a variable, a classifier model based on these 

differences can be constructed, and classifications can be made by classifying individual 

pixels at a time. 

Band-Reduction Techniques: Decrease collinearity between variables and improve model 

performance by applying dimensionality reduction techniques like PCA, successive 

projection algorithm (SPA), stepwise discriminant analysis (SDA), linear discriminant 

analysis (LDA), minimum noise fraction (MNF) algorithm, and partial least squares 

discriminant analysis (PLS-DA). 

Disease Detection Techniques: After the images have been divided, the separated portions 

can be sent into a classifier to identify whether the disease is present. The divided portions 

can then be merged into a single image with the diseased area highlighted. Depending on 

the study object, aerial photos are segmented differently and can be adjusted using a 

classifier to achieve optimal performance. A number of studies have used different 

methods, such as a segmentation procedure, to build the dataset by dividing the photos into 

11 × 11, 13 × 13, 32 × 32, 64 × 64, 128 × 128, 224 × 224, 256 × 256, and 800 × 800 

patches. 

The research publication [2] showed how deep learning-based diagnosis of plant diseases 

is a perfect fit due to the extensive and sometimes redundant information contained in 

Hyperspectral data cubes. In this instance, scientists used a brand-new 3D deep 

convolutional neural network (DCNN) that absorbs the Hyperspectral data straight away. 

They also questioned the learned model to generate answers that made sense biologically. 

They concentrated on charcoal rot, a soil-borne fungal disease that has a significant 

economic impact and lowers soybean crop yields globally. Outcomes Their 3D DCNN 

exhibits an infected class F1 score of 0.87 and a classification accuracy of 95.73% based 

on hyperspectral imaging of inoculated and mock-inoculated stem images. They 

demonstrated how the model uses the geographical regions with obvious clinical 

symptoms for classification by visualizing the most sensitive pixel positions using the idea 

of a saliency map. The near infrared area (NIR), which is also a frequently used spectral 

range for assessing a plant's vegetative health, is where the researchers discovered that the 

model's most sensitive wavelengths for classification lie. The study concluded that the 

application of an explainable deep learning model yields high accuracy as well as 

physiological insight into model predictions, hence enhancing model prediction 

confidence. These clarified forecasts are amenable to ultimate application in automated 

phenotyping tools for research and precision agriculture. 

A survey of the neural network algorithms currently in use for processing image data, with 

a focus on crop disease detection, conducted in the research paper [3]. An examination of 

the various image processing methods, deep learning models and architectures, and data 

acquisition sources used to manage the provided imaging data comes first. The study also 
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emphasized the outcomes of evaluating several deep learning models that are already in 

use, and it concluded by discussing the potential applications of hyperspectral data analysis 

in the future. The purpose of this survey's preparation is to enable future study to discover 

deeper capabilities of deep learning while enhancing the accuracy and performance of the 

system's plant disease detection. 

The survey conducted in [4] aimed to identify plant diseases using handmade features 

derived from deep learning-based models. Researchers have shown that deep learning-

based techniques can reach appreciable accuracy rates on a given dataset; but, when the 

system is tested on different datasets or in field imaging conditions, the model's 

performance may suffer noticeably. Deep learning models with an inception layer, like 

GoogleNet and InceptionV3, are better at extracting features and yielding better 

performance outcomes than other models. They also discuss the difficulties that must be 

overcome to correctly identify plant diseases. Online resources include standard datasets 

on plant diseases, including those on Rice disease, Cotton disease, Hops disease, Cassava 

disease, and Plant Village disease. Thirteen different classes representing fourteen different 

plant species (fruits and vegetables) make up the Plant Village dataset. Five distinct types 

of diseases with nonuniform background circumstances make up the Hops dataset. Among 

the diseases are nutritional, pest, downy, powdery, and healthy diseases. Both healthy and 

sick cotton plants and leaves make up the Cotton dataset. Four distinct disease types that 

were addressed in the field are included in the rice disease dataset. The diseases brown 

spot, blast, bacterial blight, and tungro are included in the rice disease dataset. 

A systematic approach to the investigation of different plant disease categorization models 

is described in the paper [5]. Researchers have conducted a systematic literature study in 

this paper on the applications of the most popular machine learning (ML) and deep 

learning (DL) algorithms for plant disease categorization. These algorithms include 

AlexNet, GoogLeNet, VGGNet, Support Vector Machine (SVM), Neural Network (NN), 

K-Nearest Neighbour (KNN), Naïve Bayes (NB), and other popular DL algorithms. The 

corresponding processing techniques for each algorithm—such as image segmentation and 

feature extraction—as well as the standard experimental setup metrics—such as the total 

number of training and testing datasets used, the number of diseases taken into account, the 

type of classifier used, and the percentage of classification accuracy—are used to 

characterize each algorithm. Researchers will find this study to be a useful resource for 

identifying plant diseases using data-driven methods. 

Identify and categorize grapevines inoculated with the recently identified DNA virus 

grapevine vein-clearing virus (GVCV) during the early asymptomatic phases, the study [6] 

used hyperspectral photography at the plant level. Two grapevine groups—healthy and 

GVCV-infected—were used in an experiment at the South Farm Research Center test site 

in Columbia, Missouri, USA (38.92 N, 92.28 W), with other variables kept under control. 

An Oulu, Finland-based SPECIM IQ 400–1000 nm Hyperspectral sensor was used to take 

pictures of every vine. Only grapevine pixels were kept after pre-processing and 

calibration of hyperspectral photos. Distinguish between two reflectance spectrum patterns 

in healthy and GVCV vines, a statistical method was utilized. The researchers computed 

and investigated the significance of disease-centric vegetation indices (VIs) for the 

classification power. Within a framework including deep learning architectures and 

conventional machine learning, pixel-wise (spectral features) and image-wise (joint 

spatial–spectral features) classification were conducted concurrently. The findings 

demonstrated that: (1) the most discriminative indices were the following: (2) the 

normalized pheophytization index (NPQI), fluorescence ratio index 1 (FRI1), plant 

senescence reflectance index (PSRI), anthocyanin index (AntGitelson), and water stress 

and canopy temperature (WSCT) measures; (3) the support vector machine (SVM) was 
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effective in VI-wise classification with smaller feature spaces, while the RF classifier 

performed better in pixel-wise and image-wise classification with larger feature spaces; 

and (4) the automated 3D convolutional neural network (3D-CNN) feature extractor 

provided. When VI-based and pixel-based classification techniques were compared, both 

produced results that were similar in terms of classification success. In particular, the 

pixel-based model's 5-fold cross-validation accuracies varied from 85.10% to 95.30% and 

from 82.13% to 96.75%. According to their findings, the support vector machine (SVM) 

performed better in the VI-wise categorization when given little feature data. When 

employing pixels for classification, it did, in fact, perform as well as the random forest 

(RF) classifier for the simplest 2-feature model. However, the RF classifier proved to be 

the most effective classifier for reflectance data using Kernel-PCA and PCA, which 

covered a wider feature space. 

According to research published in article [7], Hyperspectral imaging technology has made 

significant advancements in the gathering of agricultural data and the identification of the 

agricultural product's internal or external qualitative qualities. The analysis of 

hyperspectral images is now more performant thanks to deep learning algorithms. Deep 

learning architectures leverage both spatial and spectral information from Hyperspectral 

picture analysis, in contrast to typical machine learning methods. This study gives a 

systematic and complete evaluation of the current efforts in deep learning for 

Hyperspectral image analysis in agriculture, offering insights and suggesting future 

research possibilities. First, a summary of its uses in agriculture is given, which include the 

detection of plant diseases, the prediction of maturity and component content, and many 

categorization themes. Subsequently, the latest developments in hyperspectral image 

processing are examined from the perspectives of feature networks and deep learning 

models. Lastly, a summary of the current issues with deep learning-based hyperspectral 

image analysis is provided, along with an outlook for future research. 

Establishing a mechanism for the presymptomatic identification of tobacco disease based 

on HSI was the primary goal of this investigation [8]. This ultimate aim was accomplished 

by fulfilling the subsequent particular goals: The process involves: (i) identifying the 

corresponding effective wavelengths (EWs) that exhibit the highest correlation between the 

spectral data and various disease stages; (ii) extracting texture features at the selected EWs 

using the grey-level co-occurrence matrix (GLCM); (iii) developing and comparing 

machine-learning models with spectral data, texture features, and data fusion, respectively, 

to quantitatively identify the tobacco disease; (iv) differentiating tobacco leaves infected 

with TMV from those that are not infected, and classifying three levels of disease degree 

during the infected period even before specific symptoms emerged. Random forests (RF), 

extreme learning machines (ELM), back propagation neural networks (BPNN), support 

vector machines (SVM), partial least squares-discrimination analysis (PLS-DA), and least 

squares support vector machines (LS-SVM). Provided are the created models' overall and 

individual (healthy, 2 DPI, 4 DPI, or 6 DPI) classification accuracy using the EWs. Most 

classification models did well; however, BPNN outperformed the others, with calibration 

and prediction classification accuracies of 95.00% and 93.33%, respectively. Overall, the 

results showed that using texture features to identify tobacco disease in relation to various 

developmental disease stages was both feasible and highly promising, even though the 

results of texture analysis based on GLCM are lower than those obtained by spectral 

reflectance.  

Within the document [9], studies were conducted in several plant-pathogen systems. For 

microscopic studies, near-isogenic barley (Hordeum vulgare) lines cv. Ingrid wild type 

(WT) and Pallas with molo 3 and Mla1 resistance were employed. Evaluation of spectral 

changes on the leaf and in cells, a Hyperspectral microscope system was used. This 
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configuration comprises of a foreoptic (Z6 APO, Leica, Wetzlar, Germany) with a 

magnification of up to 7.3x, mounted on a hyperspectral line scanner (spectral camera PFD 

V10E, Specim, Oulu, Finland) in the visible (400 – 700 nm) and near infrared (700 – 1000 

nm) ranges. Time series imaging was used to track the emergence of symptoms and the 

early resistance responses in barley and sugar beet. The extraction, analysis, and 

classification of changes in spectral reflectance were done manually and by data mining 

techniques, respectively. The program ENVI 5.1 + IDL 8.3 (ITT Visual Information 

Solutions, Boulder, USA) was used to calculate reflectance in relation to a white reference 

and the dark current. Smooth hyperspectral images were subjected to the Savitzky-Golay 

filter (Savitzky & Golay, 1964) following normalization. These pre-processed images were 

utilized with Matlab, Python, or ENVI 5.1 + IDL 8.3 for additional analysis. The Simplex 

Volume Maximization (SiVM) technique was applied, which describes the data 

(hyperspectral images and signatures) in terms of a small number of extreme components. 

Additionally, K-means clustering was used on the as an unsupervised, data-driven method. 

Using the spectral angle mapper (SAM) technique, healthy and diseased pixels on the 

canopy scale may be classified spectrally. Every pixel in the hyperspectral photos was 

considered using the data analysis techniques that were demonstrated. Signatures in 

spectrums of seven cluster means. Pseudo-colour images were used to visualize the 

clustering results. Each cluster was given with a specific colour. Without human 

assistance, typical spectral clusters of green for healthy tissue, blue for leaf veins, and 

yellow to red for Cercospora leaf spots could be automatically detected. 

In the study that was conducted [10], Numerous vegetation indices have been constructed 

to understand the data, either by biological reasoning or by presumption (for example, 

indices derived from satellite multispectral remote sensing data may only have had a 

restricted number of wavelengths available). These indices are referred regarded as 

"vegetation indices" when they are used on plant material. There are numerous vegetation 

indices available, and each one describes the physiological characteristics of vegetation 

using a unique set of wavelength measurements, focusing on either the general 

characteristics of the plant or growth metrics. Finding variations in the abrupt rise in 

reflectance at the red/near-infrared border is another often employed strategy. The term 

"red edge" refers to the small region in the electromagnetic spectrum (690–740 nm) where 

the near infrared and visible spectrums meet. Since chlorophyll extensively absorbs 

wavelengths up to around 700 nm, this section's green plant material exhibits a large 

change in spectral response (derivative). As a result, the material has low reflectance in this 

range but strongly reflects the infrared (from about 720 nm). Powdery mildew in wheat 

(Blumeria graminis f. sp. Tritici) has been identified using a disease index based on the red 

edge position; however, this method was not as accurate as Partial Least Squares 

Regression (PLSR), which used a statistical approach. In the study using avocado plants, 

the fungal disease Laurel wilt (Raffaelea lauricola) was investigated using the QDA 

method on plants grown in both a field and a glasshouse. 94% of the QDA classifications 

were accurate. 

 

3. METHODOLOGY  

The samples that were taken from the site were used to identify the disease. Disease 

identification in Arecanut requires a methodical strategy that combines technological 

advancements, laboratory analysis, and field observation. This is a general approach to 

identifying diseases in Arecanut.  

1. Field Survey and Observation: This includes routine inspection, identifying 

symptoms, and observing seasonal trends.  
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2. Sample Collection: Samples of soil, water, roots, leaves, and other materials may be 

collected.  

3. Symptomatology charts: These will show a correlation between potential illnesses and 

their severity levels.  

4. Remote Sensing Technology: This method determines the location and severity of a 

disease by using Hyperspectral or drone imagery.  

A high-level summary of the steps involved in applying hyperspectral imaging for disease 

detection is given in Figure 1. The precise Hyperspectral imaging technology, the features 

of the target crop (Arecanut), and the machine learning techniques selected for 

categorization may all influence the actual implementation.The following block diagram  

in Figure 1 represents the overall methodology adopted for the research work carried out.  

 

Figure 1 : Methodology of the Proposed System 

 

Here is  how Hyperspectral imaging can be applied in Arecanut plant disease detection.  

3.1.  Data acquisition: To obtain Hyperspectral images, specialized sensors or camer: s 

are used, which can record a broad range of wavelengths, usually from the visible to the 

near infrared. The excellent spectral resolution of these sensors allows for the detection of 

minute variations in the reflectance characteristics of plants. 

3.2. Preprocessing: Reduce noise, account for atmospheric effects, and improve the 

spectrum information, the obtained Hyperspectral images go through several preprocessing 

stages. This encompasses atmospheric adjustment, geometric registration, and radiometric 

calibration. 

Hyperspectral data offers a multitude of spectral information for every pixel in the image, 

making it ideal for feature extraction. To determine the pertinent spectral properties that 

can distinguish healthy plants from diseased ones, feature extraction techniques are used. 

These characteristics could include patterns of absorption or reflection linked to 

biochemical alterations brought on by illness in plants. 

3.3. Classification: Machine learning methods or statistical models can be used for 

classification after the pertinent features have been extracted. These algorithms are trained 

using a tagged dataset, which consists of hyperspectral pictures labelled with the respective 

disease status (well or sick). Then, new, unseen hyperspectral photos may be classified 

using the trained models, and diseases in Arecanut plants can be detected. 
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3.4.  Disease mapping and monitoring: These tasks can be completed by analysing 

Hyperspectral photos of Arecanut plants over time. It is possible to track changes in a 

plant's spectral signature, which makes disease early detection and spatial mapping 

possible. This data can help control the spread of diseases within Arecanut plants and 

facilitate the implementation of focused interventions. 

It's important to remember that Hyperspectral imaging is a challenging and specialized 

discipline that calls for knowledge of machine learning, image processing, and remote 

sensing. It frequently works in tandem with additional diagnostic methods and field 

observations to offer a thorough comprehension of the dynamics of plant health and 

disease. 

 

4. RESULTS AND DISCUSSIONS  

4.1.Dataset Collection and the study area:  The methodical gathering of data over 

several spectrum bands with meticulous attention paid to spectral, spatial, and temporal 

resolutions, is known as hyperspectral imaging. Applications utilizing hyperspectral 

imaging depend on precise data gathering, processing, and analysis.  

4.1.1.The samples of several types of leaves—diseased and healthy are taken into 

consideration from the Channagiri, Davanagere, actual site. Additionally, the samples are 

separated according to age groups. Both the unhealthy and the healthy samples were 

recognized and categorized as the classification is divided into two categories: (i) healthy 

and (ii) diseased. Once again, the diseased category was split into three categories: 

diseased-low, diseased-mild, and diseased- severe. The age ranges that were considered 

were: 0.5 months to 10 years, 10-15 years, 15–25 years, and older than 25 years. In 

Karnataka, India, Channagiri is located at roughly 14.0291° N latitude and 75.9700° 

longitude. E.   

The leaf samples collected were tested under spectroradiometer to get their respective 

reflectance values, which helped in further analysis. The spectroradiometer specifications 

are as below:   

The ASD FieldSpec 4 standard res (FS4) spectroradiometer is a battery-operated, portable 

spectrometer. It is intended for measurements in the lab or during field campaigns.  The 

wavelengths in the spectral range of 250–2500 nm is sampled at a rate of 0.2 seconds per 

spectrum. 251. Bands with a spectral resolution ranging from 3 nm at the very short 

wavelengths to 10 nm at the farther wavelengths. 
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Figure 2: Different sites visited (Different age groups and with and without disease 

conditions) 

 

The following Figure  3  shows the laboratory arrangements made for testing the leaf 

samples.  

 

 
 

Figure 3 : Testing the samples under the Spectroradiometer. 

 

4.1.Pre-Processing stage: Data collected was converted into its equivalent reflectance 

values, this stage is called as spectral library build-up. Once the spectral library is 

created. The pre-processing of the data was carried out using ENVI 5.6. Output of this 

stage contains only the required bands where useful information is present. The 

FLAASH (Fast Line of Sight Atmospheric Analysis of Spectral Hypercubes was 

performed along with MNF for dimensionality reduction. The process of PPI (Purest 

pixel Index) determines the ROI with only the purest pixels of the scene.  
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Figure  3 :  Image1 with Atmospheric correction and Image 2 without Atmospheric 

Correction  

 

 
 

Figure 4: Radiance to Reflectance conversion Plot of vegetation :(i) Obtained (ii) 

Reference. 

 

The spectral library created was used to give input to the machine learning algorithms 

models for further process of classification. The training and testing ratio was taken as 

80:20. The plot of the reflectance graph in figure shows the spectral analysis of the healthy 

and diseased samples collected.  
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Figure 5: Image showing Reflectance spectral curve of the field data (i) Diseased (ii) 

Healthy for various  age groups. 

4.2.Classification: Detecting diseases in Arecanut crops can benefit from various 

classification algorithms in machine learning. The choice of algorithm depends on 

factors such as the complexity of the problem, the size of the dataset, and the features 

available. Here are some commonly used classification algorithms for disease detection 

in crops:  

4.2.1.1.Decision Trees (DT): Decision trees are easy to interpret and can handle both 

numerical and categorical data. They are effective for feature selection and can be 

visualized to understand the decision-making process.  

4.2.2. Random Forest (RF): Random Forest is an ensemble method that builds multiple 

decision trees and combines their prediction and often provides better accuracy 

than individual decision trees and is robust against overfitting.  

4.2.3. K-Nearest Neighbours (KNN): KNN classifies data points based on the majority 

class of their k-nearest neighbour. It's a simple and effective algorithm, especially 

when there is spatial correlation in the data.  

4.2.4. Naïve Bayes: Naive Bayes is based on Bayes' theorem and assumes independence 

between features. It is computationally efficient and works well for text 

classification and situations where the independence assumption is reasonable.  

4.2.5. Logistic Regression: Logistic Regression is a simple yet powerful algorithm for 

binary classification and is easy to implement and interpret, making it a good 

choice for baseline models.  

4.2.6. LightGBM (Light Gradient Boosting Machine): It is a gradient boosting 

framework that is designed for efficient and distributed training of large datasets. It 

is developed by Microsoft and is open source. LightGBM is particularly known for 

its speed and efficiency, making it suitable for handling large-scale datasets and 

tasks.  

4.2.7. Extra Trees Algorithm: Extra Trees is an ensemble learning method, like Random 

Forests. It belongs to the family of tree-based ensemble algorithms. 

4.2.8. XGBoost Algorithm: It stands for eXtreme Gradient Boosting, is a popular and 

powerful machine learning algorithm used for both classification and regression 

tasks. It is an implementation of gradient boosted decision trees designed for speed 



 

 

330 

Vol. 21, No. 1, (2024) 

ISSN: 1005-0930 

 
 

and performance. XGBoost is widely used in machine learning competitions and is 

considered a go-to algorithm for structured/tabular data problems.  

4.2.9. Gradient Boosting: It includes the Gradient Boosting Classifier, is known for its 

effectiveness in a variety of tasks and often performs well on structured/tabular 

data. It is important to note that like XGBoost, the training of the model is 

sequential, and each new tree corrects errors made by the previous ones. It is a 

powerful algorithm but can be computationally expensive, especially for large 

dataset. Gradient Boosting is a machine learning technique that builds a series of 

weak learners (usually decision trees) and combines their predictions to create a 

stronger, more accurate model. In the context of scikit-learn, one of the popular 

libraries for machine learning in Python.  

4.2.10. Support Vector Machines: Support Vector Machines (SVM) is a supervised 

machine learning algorithm used for classification and regression tasks. SVM 

works by finding a hyperplane that best separates different classes in the feature 

space. The hyperplane is chosen in such a way that it maximizes the margin, which 

is the distance between the hyperplane and the nearest data points of each class, 

also known as support vector.  

4.2.11. Linear Discriminant Analysis (LDA): LDA is a dimensionality reduction and 

classification technique. In the context of linear discriminant analysis, LDA is used 

to find the linear combinations of features that best separate two or more classes. It 

aims to maximize the distance between the means of different classes while 

minimizing the spread (variance) within each class. 

4.2.12. Quadratic Discriminant Analysis: It is a classification algorithm closely related 

to Linear Discriminant Analysis (LDA). Like LDA, QDA is a supervised learning 

algorithm used for classification tasks. However, unlike LDA, QDA assumes that 

the covariance of each class is different, allowing for a more flexible decision 

boundary.  

4.2.13. AdaBoost Algorithm: “Ada" typically refers to AdaBoost (Adaptive Boosting), 

which is an ensemble learning algorithm used for classification and regression 

tasks. AdaBoost is particularly powerful and effective in improving the 

performance of weak learners (e.g., decision trees) by combining them to create a 

strong learner. The algorithm gives more weight to the misclassified instances in 

each iteration, allowing subsequent weak learners to focus on the mistakes made by 

the previous one.  

The various models discussed above were considered for the classification purpose. The 

following parameters given in Table 1 are obtained after the classification. Model analysis 

was done based on ACC (Accuracy), AUC, Recall and PREC (Precision), F1 Score, Kappa 

Coefficient, MCC (Mathew’s Correlation Coefficient and TT (Time Taken) .  

Table 1: Performance Analysis of Various Algorithms 

Model  ACC AUC Recall PREC F1 Kappa MCC TT(Sec)  

lightgb

m 

0.8942 0.9926 0.8826 0.8942 0.8941 0.8636 0.8637 0.6480 

ET 0.8930 0.9663 0.8772 0.8931 0.8930 0.8620 0.8620 0.3380 
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KNN 0.8876 0.9866 0.8743 0.8877 0.8875 0.8550 0.8550 0.1270 

RF 0.8863 0.9901 0.8713 0.8866 0.8863 0.8534 0.8534 0.5540 

XGBoo

st 

0.8861 0.9914 0.8749 0.8863 0.,886

1 

0.8532 0.8533 2.5150 

DT 0.8768 0.9247 0.8593 0.8766 0.8765 0.8410 0.8411 0.0300 

GBC 0.8281 0.9809 0.8325 0.8347 0.8286 0.7799 0.7811 3.4579 

LR 0.6311 0.9156 0.5952 0.6579 0.6309 0.5235 0.5283 2.8340 

Ridge 0.6289 0.0000 0.595 0.652 0.633 0.5251 0.5282 0.0140 

SVM 0.5911 0.0000 0.5135 0.5662 0.5632 0.4653 0.4746 0.0740 

LDA 0.5872 0.9066 0.6784 0.8501 0.6058 0.5050 0.5536 0.02420 

NB 0.4702 0.8973 0.5991 0.5414 0.4231 0.3800 0.4477 0.0170 

Ada 0.3782 0.7057 0.3054 0.4108 0.3109 0.1720 0.2132 0.2380 

QDA 0.2948 0.000 0.2000 0.0869 0.1342 0.000 0.000 0.0260 

Dummy 0.2948 0.5000 0.2000 0.0869 0.1342 0.000 0.000 0.0120 

From table 1 it is evident that, Lightbgm Algorithm performed better in all the parameters 

on the datasets taken. It is considered as the best classification algorithm for disease 

detection at various levels. The following graphs indicated the spectral reflectance curve 

for the broad category of healthy and diseased (mild, severe, and light)  
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Figure 6: Spectral Prediction Plots of (i) Healthy and (ii) Diseased –Low (iii) Diseased –

Medium and (iv) Diseased-Severe 

 

Figure 6 shows the spectral reflectance curve taken between 200 nm to 2500 nm which is 

the range of spectroradiometer. We can observe that prominent wavelength lies between 

700 nm to 2350nm range. Hence for evaluation purpose the plot of reflectance in this range 

is only considered which is shown below in figure 8. The red edge transition between 500 

nm to 700 nm is the point to be considered in the analysis of disease. Red edge point gives 

whether the samples taken can be considered under healthy category or non – healthy 

category.  
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Figure 7: Plot of the (i) Entire Spectral Reflectance Versus Wavelength between the range 

of 200 to 2350 nm (ii) spectral reflectance Versus wavelength between the range of 700 to 

2350 nm for various Status categories 

 

  

Figure 8: Plot for spectral reflectance Versus wavelength between the range of 700 to 2350 

nm for (i) Healthy Status (ii) Diseased – Low Status  (iii) Diseased – Medium Status  (iv) 

Diseased – Severe   Status 
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4.4. Feature Importance Metrics:  

This section gives an overview of the important features that should be considered 

as to understand the important wavelengths which helps one to determine the health status 

of the Arecanut samples.  

 

Figure 9: Feature importance Metrics 

The above graph shows that 749nm (Red edge transition value), 712nm, 1399nm are the 

prominent wavelengths that decide the health status of the Arecanut plot samples that are 

taken into consideration. Along with these, the location index is the next parameter that 

must be given with importance. As the maximum variation is seen with respect to 749nm, 

it must be given major importance.  

4.3.Location wise impact of Health Status: The following figure gives the relation 

between the various locations (Age based) and the impact of health status in those 

locations. The graph is a clear indication of the amount of healthy Arecanut plantation 

present in different locations. 

The Arecanut plants of 0.5-10 years are seen more in the 5th to 10th sample places taken 

and are healthy. Location-wise these samples are taken as healthy samples. Hence healthy 

samples among the total samples are present in these places. Diseased – Low Arecanut 

plants are present in 12th-14th sample locations. Diseased-Medium can be seen in 8th -

13th sample locations. Diseased- Severe and found in 7th – 12th Sample locations. This 

way we could identify the locations of the Diseased and healthy category Arecanut from 

the samples taken using spectroradiometer.  
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CONCLUSION  

The overall research carried out in various locations/ sites of Channagiri, Davanagere on 

Arecanut plantations have given us details of the health status of the various samples. The 

study is helpful in determining the area as healthy, diseased etc. so that careful measures 

can be taken beforehand to find out the reason for the effected diseases. The analysis 

carried out is helpful for the farmers of that area to know the status of their crop as to apply 

the corrective measures. The research done on these real time samples also will be helpful 

in predicting the yield and improvement of the same in the future.  

The various machine learning and deep learning approaches helped us to perform the 

classification of the samples based on their disease severity measures.  

 The analysis of soil and water can give the better solution for the farmers to judge the 

deficiencies which caused the diseases. Work can be further progressed by taking more 

samples into consideration and comparing health status year wise/ seasonwise.  
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