FUZZY MINIMAL G#rg-OPEN SETS AND FUZZY MAXIMAL G#rg-OPEN SETS IN FUZZY TOPOLOGICAL SPACES

*Holabasayya I. Sankannavar, Jenifer J. Karnel

Department of Mathematics KLE's Polytechnic, Bailhongal-591102, Karnataka-India SDM College of Engineering and Technology, Dharwad-580002, Karnataka-India DOI: <u>https://doie.org/10.0628/Jbse.2024959424</u>

Abstract: The aim of this paper is to introduce fuzzy minimal G#rg-open and fuzzy maximal G#rg-open sets in fuzzy topological space. Further, we investigate related properties with these new sets.

2010 AMS Classification: 54A40

Keywords and phrases: fuzzy minimal open sets, fuzzy G#rg-open sets, fuzzy minimal G#rg-open sets, fuzzy maximal G#rg-open sets.

1. Introduction: In 1965 Zadeh [5] established concept of fuzzy set and in 1968 Chang [2] introduced fuzzy topology and in 1981 Azad[1] investigated fuzzy semi-continuity properties in fts. Ittanagi and Wali [3] instigated the notions of fuzzy maximal and minimal open sets. Recently the notion of fuzzy G#rg-closed set introduced and investigated by Holabasayya Sankannavar and Jenifer Karnel[4]. This paper, introduce new class of fuzzy minimal G#rg-open and fuzzy maximal G#rg-open sets. Further some of their related properties investigated.

Throughout this paper *fts* refers to *fuzzy topological space*.

Definition 1.1: A proper nonempty fuzzy open subset U of a fts X is said to be fuzzy minimal open set, if any fuzzy open set which is contained in U is 0_X or U.

Definition 1.2: A proper nonempty fuzzy open subset U of a fts X is said to be fuzzy maximal open set, if any fuzzy open set which contains U is 1_X or U.

Definition 1.3: A proper nonempty fuzzy closed subset F of afts X is said to be fuzzy minimal closed set, if any fuzzy closed set which is contained in F is 0_X or F.

Definition 1.4: A proper nonempty fuzzy closed subset F of a fts X is said to be fuzzy maximal closed set, if any fuzzy closed set which contains F is 1_X or F.

Definition 1.5:[4] A fuzzy subset A of a fts X is said to be fuzzy generalized #rg-closed (briefly, Fg#rg-closed) set, if $cl(A) \le U$, whenever $A \le U$ and U is fuzzy #rg-open set in X. The complement of fuzzy G#rg-closed set is their fuzzy G#rg-open set in fts X.

Definition 1.6: Let A be fuzzy subset of fts X, then fuzzy G#rg-closure of A is defined as $Fg#rg-cl(A) = \Lambda \{ all fuzzy G#rg-closed sets containing the fuzzy set A \}.$

2.Minimal G#rg-open sets and maximal G#rg-closed sets:

A new class of sets called fuzzy minimal G#rg-open sets (fuzzy maximal G#rg-closed sets) and fuzzy maximal G#rg-open sets (fuzzy minimal G#rg-closed sets) fuzzy topological spaces are introduced, which are subclasses of Fg#rg-open sets (Fg#rg-closed sets). We investigate some of their properties infuzzy topological spaces.

Definition 2.1:Let U be any fuzzy G#rg-open subset of ftsX, U is called fuzzy minimal G#rg-open set if and only if any fuzzy G#rg-open set which is contained in set U is 0_X or U.

Remark 2.2:Fuzzy minimal open sets and fuzzy minimal G#rg-open sets are independent andfuzzy open sets and fuzzy minimal G#rg-open sets are independent each other and is illustrated in the following example.

Example 2.3:Let X = {a, b, c, d} be any fuzzy set and fuzzy subsets are $0_x = \{(a, 0), (b, 0), (c, 0), (d, 0)\} = 0$, $\alpha_1 = \{(a, 1), (b, 0), (c, 0), (d, 0)\}$, $\alpha_2 = \{(a, 0), (b, 1), (c, 1), (d, 0)\}$, $\alpha_3 = \{(a, 1), (b, 1), (c, 1), (d, 0)\}$ and $1_x = \{(a, 1), (b, 1), (c, 1), (d, 1)\} = 1$. The fuzzy topology of X is T = { $0_x, \alpha_1, \alpha_2, \alpha_3, 1_x$ }, then fuzzy minimal open sets are $\alpha_1 = \{(a, 1), (b, 0), (c, 0), (d, 0)\}$ and $\alpha_2 = \{(a, 0), (b, 1), (c, 1), (d, 0)\}$. Let fuzzy G#rg-open sets in fts X are $1_X, 0_X, \alpha_1 = \{(a, 1), (b, 0), (c, 0), (d, 0)\}$, $\beta_1 = \{(a, 0), (b, 1), (c, 0), (d, 0)\}$, $\beta_2 = \{(a, 0), (b, 0), (c, 1), (d, 0)\}$, $\beta_3 = \{(a, 1), (b, 1), (c, 0), (d, 0)\}$, $\beta_4 = \{(a, 1), (b, 0), (c, 1), (d, 0)\}$, $\alpha_3 = \{(a, 1), (b, 1), (c, 1), (d, 0)\}$ and fuzzy minimal G#rg-open sets are $\alpha_1, \beta_1, \beta_2$. Here α_3 is a fuzzy minimal open set fuzzy minimal G#rg-open sets, but fuzzy functional open sets (fuzzy sets).

Remark 2.4: From above discussion we have the following implications:

Where, $A \rightarrow B$ means A implies B and A \leftrightarrow B means A is independent with B.

Theorem 2.5: i) Let G be fuzzy minimal G#rg-open set and H be fuzzy G#rg-open set, then G $AH = 0_X$ or $G \le H$.

ii) Let G and H be fuzzy minimal G#rg-open sets, then $G \wedge H = 0_X$ or G = H.

Proof: (i) Let G be fuzzy minimal G#rg-open set and H be fuzzy G#rg-open set. If $G \land H = 0_X$, then there is nothing to prove. But if $G \land H \neq 0_X$, then we have to prove that $G \leq H$. Suppose $G \land H \neq 0_X$. Then $G \land H \leq U$ and $G \land H$ is fuzzy G#rg-open set, as the finite intersection of fuzzy G#rg-open sets is a fuzzy G#rg-open set. Since G is a fuzzy minimal G#rg-open set, we have $G \land H = G$. Therefore $G \leq H$.

(ii) Let G and H are fuzzy minimal G#rg-open sets. Suppose, $G \land H \neq 0_X$, then we see that G \leq H and H \leq G by (i). Therefore G = H.

Theorem 2.6: Let G be a fuzzy minimal G#rg-open set. If x_{α} is an element of G, then G \leq H for any fuzzy open neighbourhood H of x_{α} .

Proof: Let G be fuzzy minimal G#rg-open set and x_{α} be an element of G. Suppose there existsfuzzy open neighbourhood H of x_{α} such that G < H. Then $G \land H$ is a fuzzy G#rg-open set such that $G \land H \leq G$ and $G \land H \neq 0_X$. Since G is a fuzzy minimal G#rg-open set, we have $G \land H = G$ i.e. $G \leq H$. This contradicts our assumption that G < H. Therefore, $G \leq H$ for any fuzzy open neighbourhood H of x_{α} .

Theorem 2.7:Let G be fuzzy minimal G#rg-open set. If x_{α} is an element of G, then G \le H for any fuzzy G#rg-open set H containing x_{α} .

Proof: Let G be fuzzy minimal G#rg-open set containing an element x_{α} . Suppose there exists a fuzzyG#rg-open set H containing x_{α} such that G \lt H. Then G \land H is a fuzzy G#rg-open set such that G \land H \le G and G \land H \ne 0_X. Since G is a fuzzy minimal G#rg-open set, we have G \land H = G i.e. G \le H. This contradicts our assumption that G \lt H. Therefore G \le H for any fuzzy G#rg-open set H containing x_{α} .

Theorem 2.8: Let G be fuzzy minimal G#rg-open set,then G = Λ {H: H is any fuzzy G#rg-open set containing x_{α} } for any element x_{α} of G.

Proof: By Theorem^{*} and from the fact that G is fuzzy G#rg-open set containing x_{α} , we have $G \leq \wedge \{H: H \text{ is any fuzzy G#rg-open set containing } x_{\alpha} \} \leq G$. Therefore, we have the result.

Theorem 2.9: Let G be a nonempty G#rg-open set, then the following three conditions are equivalent.

i) G is fuzzy minimal G#rg-open set.

ii) $G \le Fg \#rg-cl(A)$ for any nonempty fuzzy subset A of G.

iii) Fg#rg-cl(G)=Fg#rg-cl(A) for any nonempty fuzzy subset A of G.

Proof: (1)⇒ (2) Let G be a fuzzy minimal G#rg-open set, $x_{\alpha} \in G$ and A be a nonempty fuzzy subset of G. By Theorem^{*}, for any fuzzy G#rg-open set H containing x_{α} , A ≤G ≤H which implies A ≤ H. Now A = A∧G ≤ A ∧ H. Since A is nonempty, therefore A ∧ H≠ 0_X. Since H is any fuzzy G#rg-open set containing x_{α} , by the property, $x_{\alpha} \in Fg#rg-cl(A)$. That is $x_{\alpha} \in G$ implies $x_{\alpha} \in Fg#rg-cl(A)$ which implies G≤ Fg#rg-cl(A) for any nonempty fuzzy subset A of G.

 $(2) \Rightarrow (3)$ Let A be fuzzy nonempty subset of G. That is A \leq G which implies Fg#rg-cl(A) \leq Fg#rg-cl(G)---(i). Again from (2) G \leq Fg#rg-cl(A) for any non-empty fuzzy subset A of G which implies Fg#rg-cl(G) \leq Fg#rg-cl(Fg#rg-cl(A))= Fg#rg-cl(A). That is Fg#rg-cl(G) \leq Fg#rg-cl(A)--- (ii). From (i) and (ii), we have Fg#rg-cl(G)= Fg#rg-cl(A) for any nonempty fuzzy subset A of G.

 $(3) \Rightarrow (1)$ From (3) we have Fg#rg-cl(G) = Fg#rg-cl(A) for any nonempty fuzzy subsetA of G. Suppose G is not a fuzzy minimal G#rg-open set. Then there exists a nonempty fuzzy G#rg-open set I such that $I \leq G$ and $I \neq G$. Now there exists an element $(a,1)\in G$ such that $(a,1)\notin I$ which implies $(a,1)\in 1_X-I$. That is Fg#rg-cl({(a,1)}) \leq Fg#rg-cl(1_X-I)= 1_X-I , as 1_X-I is a fuzzy G#rg-closed set in X. It follows that Fg#rg-cl({(a,1)}) \neq Fg#rg-cl(G). This is

503

a contradiction to fact that $Fg#rg-cl(\{(a,1)\})=Fg#rg-cl(G)$ for any nonempty fuzzy subset $\{(a,1)\}$ of G. Therefore, G is a fuzzy minimal G#rg-open set.

Theorem 2.10: Let G be fuzzy nonempty finite fuzzy G#rg-open set, then there exists at least one (finite) fuzzy minimal G#rg-open set H such that $H \leq G$.

Proof: Let G be nonempty finite fuzzy G#rg-open set. If G is a fuzzy minimal G#rg-open set, we may set H = G. If G is not a fuzzy minimal G#rg-open set, then there exists a (finite) fuzzyG#rg-open set G₁ such that $0_X \neq G_1 \leq G$. If G₁ is a fuzzy minimal G#rg-open set, we may set $H = G_1$ If G₁ is not a fuzzy minimal G#rg-open set, then there exists a (finite) fuzzyG#rg-open set G₂ such that $0_X \neq G_2 \leq G_1$. Continuing this process, we have a sequence of fuzzy G#rg-open sets $G > G_1 > G_2 > G_3 \dots > G_k > \dots$. Since G is a finite fuzzy set, this process repeats only finitely. Then finally we get a fuzzy minimal G#rg-open set H = G_n for some positive integer n.

Corollary 2.11: Let G be a finite fuzzy minimal open set, then there exists at least one (finite) fuzzy minimal G#rg-open set H such that $H \le G$.

Proof: Let G be a fuzzy finite minimal open set, then G is a nonempty finite fuzzy G#rg-open set. By theorem 2.10, there exists at least one (finite) fuzzy minimal G#rg-open set H such that $H \leq G$.

Theorem 2.12: Let G and G_{λ} arefuzzy minimal G#rg-open sets for any element λ of Λ . If $G \leq \bigvee_{\lambda \in \Lambda} G_{\lambda}$, then there exists an element λ of Λ such that $G = G_{\lambda}$.

Proof: Let $G \leq \bigvee_{\lambda \in \Lambda} G_{\lambda}$. Then $G \wedge (\bigvee_{\lambda \in \Lambda} G_{\lambda}) = G$. That $is \bigvee_{\lambda \in \Lambda} (G \wedge G_{\lambda}) = G$. Also, by theorem 5(ii), $\bigvee_{\lambda \in \Lambda} (G \wedge G_{\lambda}) = 0_X$ or $G = G_{\lambda}$ for any $\lambda \in \Lambda$. It follows that there exists an element $\lambda \in \Lambda$ such that $G = G_{\lambda}$.

Theorem 2.13: Let G and G_{λ} are fuzzy minimal G#rg-open sets for any element λ of Λ . If G = G_{λ} for any element $\lambda \in \Lambda$, then $(\bigvee_{\lambda \in \Lambda} G_{\lambda}) \wedge G = 0_X$.

Proof: Suppose that $(\bigvee_{\lambda \in \Lambda} G_{\lambda}) \land G \neq 0_X$. That is $\bigvee_{\lambda \in \Lambda} (G_{\lambda} \land G) \neq 0_X$. Then there exits an element $\lambda \in \Lambda$ such that $G_{\lambda} \land G \neq 0_X$. By theorem 5(ii), we have $G = G_{\lambda}$, which contradicts the fact that $G \neq G_{\lambda}$ for any $\lambda \in \Lambda$. Hence $(\bigvee_{\lambda \in \Lambda} G_{\lambda}) \land G = 0_X$.

Theorem 2.14: Let G_{λ} be fuzzy minimal G#rg-open set for any element λ of Λ and $G_{\lambda} \wedge G_{\mu}$ for any elements λ and μ of Λ with $\lambda \neq \mu$. Assume that $|\Lambda| \ge 2$. Let μ be any element of Λ , then $(\bigvee_{\lambda \in \Lambda - (M)} G_{\lambda}) \wedge G_{\mu} = 0_X$.

Proof: Put G by G_{λ} in theorem 2.12, then we have the result.

Corollary 2.15: Let G_{λ} be a fuzzy minimal G#rg-open set for any element λ of Λ and $G_{\lambda} \neq G_{\mu}$ for any elements λ and μ of Λ with $\lambda \neq \mu$. If T is a proper nonempty fuzzy subset of Λ , then $(\bigvee_{\lambda \in \Lambda - T} G_{\lambda}) \Lambda$ $(\bigvee_{\gamma \in T} G_{\gamma}) = 0_X$.

Theorem 2.16: Let G_{λ} and G_{γ} are fuzzy minimal G#rg-open sets for any element $\lambda \in \Lambda$ and $\gamma \in T$. If there exists an element γ of T such that $G_{\lambda} \neq G_{\gamma}$ for any element λ of Λ , then $(\bigvee_{\gamma \in T} G_{\gamma}) \not\prec (\bigvee_{\lambda \in \Lambda} G_{\lambda})$.

Proof: Suppose that an element γ^{1} of T satisfies $G_{\lambda} \neq G_{\gamma 1}$ for any element γ of Λ . If $(\bigvee_{\gamma \in T} G_{\gamma}) < (\bigvee_{\lambda \in \Lambda} G_{\lambda})$, then we see $G_{\gamma 1} < \bigvee_{\lambda \in \Lambda} G_{\lambda}$. By theorem 2.12, there exists an element λ of Λ such that $G_{\gamma 1} = G_{\lambda}$, which is a contradiction. It follows that $(\bigvee_{\gamma \in T} G_{\gamma}) \not< (\bigvee_{\lambda \in \Lambda} G_{\lambda})$.

Theorem 2.17: Let G_{λ} be a fuzzy minimal G#rg-open set for any element λ of Λ and $G_{\lambda} \neq G_{\mu}$ for any elements λ and μ of Λ with $\lambda \neq \mu$. If T is a proper nonempty fuzzy subset of Λ , then $(\bigvee_{\gamma \in T} G_{\gamma}) < (\bigvee_{\lambda \in \Lambda} G_{\lambda})$.

Proof: Let k be any element of Λ -T, then $G_k \Lambda V_{\gamma \in T} G_{\gamma} = V_{\gamma \in T} (G_k \Lambda G_{\gamma}) = 0_X$ and $G_k \Lambda (V_{\lambda \in \Lambda} G_{\lambda})$ = $V_{\lambda \in \Lambda} (G_k \Lambda G_{\lambda}) = G_k$. If $(V_{\gamma \in T} G_{\gamma}) = (V_{\lambda \in \Lambda} G_{\lambda})$, then we have $0_X = G_k$. This contradicts our assumption that G_k is a fuzzy minimal G#rg-open set. Therefore, we have the result.

Definition: Let F be any proper fuzzyG#rg-closed subset of X is called fuzzy maximal G#rgclosed set if and only if any fuzzyG#rg-closed set which contains F is either 1_X or F.

Remark 2.18: Fuzzy Maximal closed sets and fuzzy maximal G#rg-closed sets are independent each other as illustrated as,

Example 2.19:Let X = {a, b, c, d} be any fuzzy set and fuzzy subsets are $0_x = \{(a, 0), (b, 0), (c, 0), (d, 0)\} = 0$, $\alpha_1 = \{(a, 1), (b, 0), (c, 0), (d, 0)\}$, $\alpha_2 = \{(a, 0), (b, 1), (c, 0), (d, 0)\}$, $\alpha_3 = \{(a, 0), (b, 0), (c, 1), (d, 0)\}$, $\alpha_4 = \{(a, 0), (b, 0), (c, 0), (d, 1)\}$, $\alpha_5 = \{(a, 1), (b, 1), (c, 0), (d, 0)\}$, $\alpha_6 = \{(a, 1), (b, 0), (c, 1), (d, 0)\}$, $\alpha_7 = \{(a, 1), (b, 0), (c, 0), (d, 1)\}$, $\alpha_8 = \{(a, 0), (b, 1), (c, 1), (c, 1), (c, 1), (c, 1)\}$, $\alpha_8 = \{(a, 0), (b, 1), (c, 1)\}$

Vol. 21, No. 1, (2024) ISSN: 1005-0930

(d, 0)}, $\alpha_9 = \{(a, 0), (b, 1), (c, 0), (d, 1)\}, \alpha_{10} = \{(a, 0), (b, 0), (c, 1), (d, 1)\}, \alpha_{11} = \{(a, 1), (b, 1), (c, 1), (d, 0)\}, \alpha_{12} = \{(a, 1), (b, 1), (c, 0), (d, 1)\}, \alpha_{13} = \{(a, 1), (b, 0), (c, 1), (d, 1)\}, \alpha_{14} = \{(a, 0), (b, 1), (c, 1), (d, 1)\}$ and $1_x = \{(a, 1), (b, 1), (c, 1), (d, 1)\} = 1$, with the fuzzy topology of X is T = $\{0_x, \alpha_1, \alpha_8, \alpha_{11}, 1_x\}$, then fuzzy closed sets in X are $0_x, \alpha_4, \alpha_7, \alpha_{14}, 1_x$. The fuzzy maximal closed sets are α_7, α_{14} and fuzzy G#rg-closed sets are $0_x, \alpha_4, \alpha_7, \alpha_9, \alpha_{10}, \alpha_{12}, \alpha_{13}, \alpha_{14}, 1_x$, then fuzzy maximal G#rg-closed sets are $\alpha_{12}, \alpha_{13}, \alpha_{14}$. But α_7 is fuzzy maximal closed sets sets un to fuzzy maximal G#rg-closed set and also α_{13} is fuzzy maximal G#rg-closed sets sets sets but not fuzzy maximal closed set in fts X.

Theorem 2.20: Let F be any proper fuzzy subset of X is said to be fuzzy maximal closed set iff 1_X -F is fuzzy minimal G#rg-open set in X.

Proof: Let F be any fuzzy maximal G#rg-closed set. Suppose 1_X -F is not a fuzzy minimal G#rg-open set, then there exists fuzzy G#rg-open set $U \neq 1_X$ -F such that $0_X \neq U < 1_X$ -F. That is F < 1_X -U and 1_X -U is a fuzzy G#rg-closed set. This contradicts our assumption that F is a fuzzy minimal G#rg-open set.

Conversely, let 1_X -F be a fuzzy minimal G#rg-open set. Suppose F is not a fuzzy maximal G#rg-closed set, then there exists a fuzzy G#rg-closed set E \neq F such that F < E \neq 1_X. That is $0_X \neq 1_X$ -E <1_X-F and 1_X -E is a fuzzy G#rg-open set. This contradicts our assumption that 1_X -F is a fuzzy minimalG#rg-open set. Therefore, F is a fuzzy maximal G#rg-closed set.

Theorem 2.21: i) Let F be a fuzzy maximal G#rg-closed set and E be any fuzzy G#rg-closed set, then $F \lor E = 1_X$ or E < F.

ii) Let F and E arefuzzy maximal G#rg-closed sets, then $F V E = 1_X \text{ or } F = E$.

Proof: i) Let F be fuzzy maximal G#rg-closed set and E be any fuzzy G#rg-closed set. If F V $E = 1_X$, then there is nothing to prove. But if F V $E \neq 1_X$, then we have to prove that E < F. Suppose F V $E \neq 1_X$, then F < F V E and F V E is fuzzy G#rg-closed set, as the finite fuzzy union of fuzzy G#rg-closed sets is a fuzzy G#rg-closed set, we have F V E = 1_X or F V E = F. Therefore, F V E = F which implies E< F.

ii) Let F and E are fuzzy maximal G#rg-closed sets. Suppose F V $E \neq 1_X$, then we see that F < E and E < F by (i). Therefore F = E.

Theorem 2.22: Let F be a fuzzy maximal G#rg-closed set. If x_{α} is a fuzzy element of F, then for any fuzzy G#rg-closed set E containing x_{α} , F V E = 1_X or E < F.

Proof: Let F be a fuzzy maximal G#rg-closed set and x_{α} is a fuzzy element of F. Suppose there exists a fuzzy G#rg-closed set E containing x_{α} such that F V E \neq X. Then F < F VE and F V E is a G#rg-closed set, as the finite union of G#rg-closed sets is a G#rg-closed set. Since F is a G#rg-closed set, we have F V E = F. Therefore E< F.

Theorem 2.23: Let F_{α} , F_{β} , F_{γ} are fuzzy maximal G#rg-closed sets such that $F_{\alpha} \neq F_{\beta}$. If $F_{\alpha} \wedge F_{\beta} < F_{\gamma}$, then either $F_{\alpha} = F_{\gamma}$ or $F_{\beta} = F_{\gamma}$.

Proof: Given that $F_{\alpha} \wedge F_{\beta} < F_{\gamma}$. If $F_{\alpha} = F_{\gamma}$ then there is nothing to prove. But if $F_{\alpha} \neq F_{\gamma}$ then we must prove $F_{\beta} = F_{\gamma}$. Now $F_{\beta} \wedge F_{\gamma} = F_{\beta} \wedge (F_{\gamma} \wedge 1_{X}) = F_{\beta} \wedge (F_{\gamma} \wedge (F_{\alpha} \vee F_{\beta}))$ (by theorem 2.21(ii) = $F_{\beta} \wedge ((F_{\gamma} \wedge F_{\alpha}) \vee (F_{\gamma} \wedge F_{\beta})) = (F_{\beta} \wedge F_{\gamma} \wedge F_{\alpha}) \vee (F_{\beta} \wedge F_{\gamma} \wedge F_{\beta}) = (F_{\alpha} \wedge F_{\beta}) \vee (F_{\gamma} \wedge F_{\beta})$ (by $F_{\alpha} \wedge F_{\beta} < F_{\gamma}) = (F_{\alpha} \vee F_{\gamma}) \wedge F_{\beta} = 1_{X} \wedge F_{\beta}$ (Since F_{α} and F_{γ} are fuzzy maximal G#rg-closed sets by theorem 2.21(ii), $F_{\alpha} \vee F_{\gamma} = 1_{X}$) = F_{β} . That is $F_{\beta} \wedge F_{\gamma} = F_{\beta}$ which implies $F_{\beta} < F_{\gamma}$. Since F_{β} and F_{γ} are fuzzy maximal G#rg-closed sets, we have $F_{\beta} = F_{\gamma}$. Therefore $F_{\beta} = F_{\gamma}$.

Theorem 2.24: Let F_{α} , F_{β} and F_{γ} be fuzzy maximal G#rg-closed sets which are different from each other. Then $(F_{\alpha} \wedge F_{\beta}) \not\prec (F_{\alpha} \wedge F_{\gamma})$.

Proof: Let $(F_{\alpha} \land F_{\beta}) < (F_{\alpha} \land F_{\gamma})$ which implies $(F_{\alpha} \land F_{\beta}) \lor (F_{\gamma} \land F_{\beta}) < (F_{\alpha} \land F_{\gamma}) \lor (F_{\gamma} \land F_{\beta})$ which implies $(F_{\alpha} \lor F_{\gamma}) \land F_{\beta} < F_{\gamma} \land (F_{\alpha} \lor F_{\beta})$. Since by theorem 2.21(ii), $F_{\alpha} \lor F_{\gamma} = 1_X$ and $F_{\alpha} \lor F_{\beta} = 1_X$ which implies $X \land F_{\beta} < F_{\gamma} \land X$ which implies $F_{\beta} < F_{\gamma}$. From the definition of fuzzy maximal G#rg-closed set it follows that $F_{\beta} = F_{\gamma}$. This is a contradiction to the fact that F_{α} , F_{β} and F_{γ} are different from each other. Therefore $(F_{\alpha} \land F_{\beta}) \not< (F_{\alpha} \land F_{\gamma})$.

Theorem 2.25: Let F be a fuzzy maximal G#rg-closed set and x be a fuzzy element of F, then $F = V\{E: E \text{ is a fuzzy G#rg-closed set containing fuzzy element} x_{\alpha} \text{ such that } F \lor E \neq 1_X\}.$

Proof: By theorem 2.24 and from fact that F is a fuzzy G#rg-closed set containing x_{α} , we have $F < V \{E: E \text{ is a fuzzy G#rg-closed set containing } x_{\alpha} \text{ such that } F \lor E \neq 1_X \} < F$. Therefore, we have the result.

Theorem 2.26: If F be a proper nonempty cofinite fuzzy G#rg-closed subset, then there exists (cofinite) fuzzy maximal G#rg-closed set E such that F < E.

Proof: If F is a fuzzy maximal G#rg-closed set, we may set E=F. Suppose F is not a fuzzy maximal G#rg-closed set, then there exists (cofinite) fuzzy G#rg-closed set F₁ such that F< $F_1 \neq 1_X$. If F₁ is a fuzzy maximal G#rg-closed set, we may set E=F₁. If F₁ is not a fuzzy maximal G#rg-closed set, then there exists a (cofinite) fuzzy G#rg-closed set F₂such that F< $F_1 < F_2 \neq 1_X$. Continuing this process, we have a sequence of fuzzy G#rg-closed sets, F <F₁< $F_2 < F_3 < F < ... < F_k < ... < F_k < ... < F_i < is a cofinite fuzzy set, this process repeats only finitely. Then, finally we get a fuzzy maximal G#rg-closed set E = E_n for some positive integer n.$

Theorem 2.27: Let F be a fuzzy maximal G#rg-closed set. If x_{α} is a fuzzy element of 1_X -F, then 1_X -F < E for any fuzzy G#rg-closed set E containing fuzzy element x_{α} .

Proof: Let F be a fuzzy maximal G#rg-closed set and $x_{\alpha} \in 1_X - F$. E < F for any fuzzy G#rg-closed set E containing x_{α} . Then E VF = 1_X by theorem 2.21(ii). Therefore $1_X - F < E$.

We now introduce minimal G#rg-closed sets and maximal G#rg-open sets in topological spaces as follows,

Definition 2.28: A proper nonempty fuzzy G#rg-closed subset F of fts X is said to be a fuzzy minimal G#rg-closed set if and only if any fuzzy G#rg-closed set which is contained in F is 0_X or F.

Remark 2.29: Every fuzzy minimal G#rg-closedset need not a fuzzy minimal closed set as seen from the following example.

Example 2.30: Let X = {a, b, c, d, e} with fuzzy subsets $0_x = \{(a, 0), (b, 0), (c, 0), (d, 0)\} = 0$, $\beta_1 = \{(a, 1)\}, \beta_2 = \{(d, 1), (e, 1)\}, \beta_3 = \{(a, 1), (d, 1), (e, 1)\}, \alpha_1 = \{(b, 1), (c, 1)\}, \alpha_2 = \{(a, 1), (b, 1), (c, 1)\}, \alpha_3 = \{(b, 1), (c, 1), (d, 1), (e, 1)\}$ and $1_x = \{(a, 1), (b, 1), (c, 1), (d, 1)\} = 1$ with fuzzy topology oof X is T = { $0_X, \beta_1, \beta_2, \beta_3, 1_X$ } then the fuzzy closed sets in X are $0_X, 1_X, \alpha_1, \alpha_2, \alpha_3$. Fuzzy minimal closed sets are $\alpha_1 = \{(b, 1), (c, 1)\}$. Fuzzy G#rg-closed sets in X are $0_X, 1_X, \alpha_1 = \{(b, 1), (c, 1)\}, \alpha_2 = \{(a, 1), (b, 1), (c, 1)\}, \alpha_4 = \{(a, 1), (b, 1), (d, 1)\}, \alpha_5 = \{(a, 1), (b, 1), (c, 1)\}, \alpha_6 = \{(a, 1), (c, 1), (d, 1)\}, \alpha_7 = \{(a, 1), (c, 1), (e, 1)\}, \alpha_8 = \{(b, 1), (c, 1), (d, 1)\}, \alpha_9 = \{(b, 1), (c, 1), (d, 1)\}, \alpha_{13} = \{(a, 1), (c, 1), (d, 1)\}, \alpha_3 = \{(b, 1), (c, 1), (e, 1)\}, \alpha_{12} = \{(a, 1), (b, 1), (d, 1), (e, 1)\}, \alpha_{13} = \{(a, 1), (c, 1), (d, 1), (e, 1)\}, \alpha_3 = \{(b, 1), (c, 1), (e, 1)\}, \alpha_{12} = \{(a, 1), (b, 1), (d, 1), (e, 1)\}, \alpha_{13} = \{(a, 1), (c, 1), (d, 1), (e, 1)\}, \alpha_{14} = \{(a, 1), (b, 1), (c, 1), (e, 1)\}, \alpha_{15} = \{(a, 1), (b, 1), (c, 1), (d, 1), (e, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{16} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{17} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{17} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{17} = \{(a, 1), (b, 1), (c, 1), (d, 1)\}, \alpha_{17} = \{(a, 1), (b, 1), (c, 1)\}, \alpha_{17} = \{(a, 1), (b, 1)$

(d, 1), (e, 1)}. Fuzzy minimal G#rg-closed sets are $\alpha_1 = \{(b, 1), (c, 1)\}, \alpha_4 = \{(a, 1), (b, 1), (d, 1)\}, \alpha_9 = \{(a, 1), (b, 1), (e, 1)\}, \alpha_6 = \{(a, 1), (c, 1), (d, 1)\}, \alpha_7 = \{(a, 1), (c, 1), (e, 1)\}.$ Here $\alpha_4 = \{(a, 1), (b, 1), (d, 1)\}, \alpha_5 = \{(a, 1), (b, 1), (e, 1)\}, \alpha_6 = \{(a, 1), (c, 1), (d, 1)\}, \alpha_7 = \{(a, 1), (c, 1), (e, 1)\}$ are fuzzy minimal G#rg-closed set but not fuzzy minimal closed set.

Definition 2.31: A proper nonempty fuzzy G#rg-open set U of fts X is said to be a fuzzy maximal G#rg-open set if and only if any fuzzy G#rg-open set which contains U is either 1_X or U.

Remark 2.32: Every fuzzy maximal G#rg-open set need not fuzzy maximal open set as seen from the following example.

Example 2.33: Let X = {a, b, c, d, e} with fuzzy subsets $0_x = \{(a, 0), (b, 0), (c, 0), (d, 0)\} = 0$, $\beta_1 = \{(a, 1)\}, \beta_2 = \{(d, 1), (e, 1)\}, \beta_3 = \{(a, 1), (d, 1), (e, 1)\}$ and $1_x = \{(a, 1), (b, 1), (c, 1), (d, 1)\} = 1$ with fuzzy topology of X is T = { $0_X, \beta_1, \beta_2, \beta_3, 1_X$ }, then fuzzy maximal open sets are $\beta_3 = \{(a, 1), (d, 1), (e, 1)\}$ and fuzzy G#rg-open sets of X are $1_X, 0_X, \beta_1 = \{(a, 1)\}, \alpha_1 = \{(b, 1)\}, \alpha_2 = \{(c, 1)\}, \alpha_3 = \{(d, 1)\}, \alpha_4 = \{(e, 1)\}, \alpha_5 = \{(a, 1), (d, 1)\}, \alpha_6 = \{(a, 1), (e, 1)\}, \alpha_7 = \{(b, 1), (d, 1)\}, \alpha_8 = \{(b, 1), (e, 1)\}, \alpha_9 = \{(c, 1), (d, 1)\}, \alpha_{10} = \{(c, 1), (e, 1)\}, \beta_2 = \{(d, 1), (e, 1)\}, \alpha_8 = \{(b, 1), (e, 1)\}, \text{then fuzzy maximal G#rg-open sets are <math>\alpha_7 = \{(b, 1), (d, 1)\}, \alpha_8 = \{(b, 1), (d, 1)\}, \alpha_{10} = \{(c, 1), (d, 1)\}, \alpha_{10} = \{(c, 1), (d, 1), (e, 1)\}$. But $\alpha_7 = \{(b, 1), (d, 1)\}, \alpha_8 = \{(b, 1), (d, 1)\}, \alpha_9 = \{(c, 1), (d, 1)\}, \alpha_{10} = \{(c, 1), (e, 1)\}, \alpha_{10} = \{(c, 1), (e, 1)\}$ are fuzzy maximal G#rg-open sets but not fuzzy maximal open sets.

Theorem 2.34: A proper non-empty fuzzy subset A of fts X is a fuzzy maximal G#rg-open set if and only if 1_X -A is a fuzzy minimal G#rg-closed set.

Proof: Let A be a fuzzy maximal G#rg-open set. Suppose 1_X -A is not a fuzzy minimal G#rgclosed set. Then there exists a fuzzy G#rg-closed set $F \neq 1_X$ -A such that $0_X \neq F < 1_X$ -A. That is A<1_X-F and 1_X-F is a fuzzy G#rg-open set. This contradicts our assumption that A is a fuzzy minimal G#rg-closed set.

Conversely let 1_X -A be a fuzzy minimal G#rg-closed set. Suppose A is not a fuzzy maximal G#rg-open set. Then there exists a fuzzy G#rg-open set E \neq A such that A<E \neq 1_X . That is $0_X \neq 1_X$ -E <1_X-A and 1_X -E is a fuzzy G#rg-closed set. This contradicts our assumption that 1_X -A is a fuzzy minimal G#rg-closed set. Therefore, A is a fuzzy maximal G#rg-closed set.

References:

- [1] Azad K. K. On fuzzy semi-continuity, fuzzy almost continuity and fuzzy weakly continuity. J. Math. Anal. Appl. 82 (1981), 14–32.
- [2] Chang C. L. Fuzzy topological spaces. J. Math.Anal.Appl. 24 (1968), 182–190.
- [3] Ittanagi, B. M.; Wali, R. S. On fuzzy minimal open and fuzzy maximal open sets in fuzzy topological spaces. Int. J. of Mathematical Sciences and Applications, 1(2)(2011), 1023-1037.
- [4] Holabasayya Sankannavar and Jenifer J. Karnel, A study of fuzzy generalized #rgclosed sets and their role in fuzzy topological spaces, Communications in Mathematics and Applications, ICRTACM23-049,Nov-2023(Communicated).
- [5] Zadeh L. A. Fuzzy sets. Inf Comput., 8 (1965), 338–353.