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Abstract 

Automotive systems are becoming increasingly complex, with new technology being included to 

meet safety, performance, standardization, and cost targets. Control systems are an essential part 

of the increment just of such technologies. Artificial Intelligence (AI) has been proposed to play 

an important role in vehicle control, helping to create self-driving solutions and enhancing the 

overall vehicle stability and efficiency, particularly in extreme operating conditions. By adopting 

suitable supervisory control actions, AI can help recover vehicle operations when these are outside 

the range of standard control solutions and have the onset scenario of different failures. In addition 

to these benefits, designed AI tools, in particular Neural Networks, appeared to be adopted and 

developed for diagnostics purposes, where learning from collected 'experience observations data, 

often not possible to be generated with simulations or under controlled conditions, is required. 

This paper presents a review of designed AI tools applied to automotive vehicle control 

optimization, diagnostics, and fault detection purposes. 

Keywords: Harnessing Artificial Intelligence, Industry 4.0, Internet of Things (IoT), Artificial 

Intelligence (AI), Machine Learning (ML), Smart Manufacturing (SM),Computer Science, Data 

Science,Vehicle, Vehicle Reliability

1. Introduction 

The predictions made by futurists back in the 1980s have finally come true with connected and 

autonomous vehicle technology emerging on our roads. These technologies use a wide range of 

sensors including LIDAR, radar, ultrasonic, and cameras to build situational awareness about the 

environment and at any given point in time, make a decision on vehicle trajectory, environment, 

vehicle-to-vehicle, and vehicle-to-infrastructure communication technologies. 

In addition to the sensors and the ability of autonomous vehicles to make a decision based on the 

information of the environment, it is extremely important to have network latency and vehicle 

latency that share the decision with the cloud or edge server. Indeed, with the continued 

development of faster supercomputing technology, the AI/ML approach requires significantly less 
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hardware in comparison to the edge computing servers. Even with limited computational resources 

on an autonomous vehicle, stakeholders must ensure overall software robustness concerning 

handling environments falling outside the trained data. This is where transfer learning and 

reinforcement learning for decision-making play a key role in ensuring safe vehicle 

operation.While AI deals with vehicle autonomy algorithm decisions, hardware control is the next 

important step in ensuring vehicle safety. Specifically, AI has to be thoroughly integrated with 

hardware control, including the Long-Short Term Memory Networks (LSTM) to predict the next 

decision based on training real-time data. In non-autonomous vehicles too, AI holds a wide range 

of capabilities to get various functionalities done, with just a mobile-like device. Specifically, AI 

can be used to perform body control for predictive maintenance of the vehicle. This needs slimmer 

Learned Compression Machines (LCM) than regular hardware control. Specific LCM parts are IC 

layout design (less redundancy), electromagnetic interference control, path planning, tire-road 

handling issues, and predictive analytics algorithms. Yet, except for the emergency brake system, 

AI cannot claim to make decisions. AI/ML should be able to build what is referred to as "Cast Safe 

Capability" stringent vehicle performance, and to achieve this, robustness and safety architecture 

must be in place. Some of these are Patternological Watermarking Schemes, Direct Hidden Layer 

Length Control, and Probabilistic Robustness. In this way, AI-based control is only as good as the 

robustness guarantees that are in place. 

 

 

Fig 1:  Application fields and Scope of the AIBSNF framework 

 

 

1.1. Background and Significance 

Modern vehicles are increasingly capable of providing sophisticated in-vehicle and remote 

services by enabling a host of vehicular and driver attributes, connecting them from inside and 

outside the vehicle to the external world, and eventually incorporating wider and more various 

services into a vehicle to support their occupants' safety, ubiquitous connectivity, and personalized 

traveling experiences. Over the years, the extent to which vehicle design has involved information 

and communication know-how has been evolving from low connectivity (mainly through the on-

board embedded sensor system) to vehicle-to-vehicle communications (V2V), vehicle-to-
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infrastructure communications (V2I), vehicle-to-Internet connections, and vehicle-to-everything 

(V2X) communications. Together with the continuous promotion of in-vehicle infotainment and 

various driver assistance systems (DAS), sensor systems of the current vehicle has been more and 

more widely taking the form of in-vehicle sensor network platforms, and the degrees of 

information available in a vehicle's environment is being extended over a wider area through the 

vehicular cloud infrastructure. 

To provide a truly personalized and efficient motorist experience, car information systems should 

combine innovative driver support for diverse applications such as driver assistance, vehicle-to-

vehicle (V2V) communication for increasing the level of road safety, toll collection, and traffic 

management using vehicle-to-infrastructure (V2I) networks where vehicle actuators and sensors 

are utilized to cooperate with static roadside equipment, infotainment and value-added services, 

advanced diagnostics platform-based cloud services for vehicle prognostics and health 

management. The paradigm of the vehicle as an information system is an all-new point of view 

that in the last years has had enormous development, translated into the modern concept of 

Connected Vehicle. In recent years, the automobile market evolution has provided modern 

vehicles with increased electronic content to computerize primary control functions to improve 

energy management and optimize performance. Vehicle systems and components are controlled 

and managed through control area network (CAN) and local interconnection network (LIN) buses, 

truly minimizing wiring system and costs. In parallel, the diagnostic capability of onboard installed 

control units is always more robust, and car manufacturers can rely on this to develop innovative 

working strategies aiming to reduce warranty costs. 

1.2. Research Aim and Objectives                                     It is first important to describe the 

purpose of the work. The overall goal of this thesis is to advance reliability and safety in the context 

of road vehicles. This will be achieved using artificial intelligence to predict the remaining useful 

life of mechanical and electronic components. Within the general research goal, several main 

objectives are pursued. 

The first is to develop a solution to predict vehicle component failures using historical data. [9] 

For this, basic data analytics must be performed, including an extensive exploratory process, 

feature engineering, choosing a predictive model, and development of a performance measurement 

mechanism. More precisely, the research intends to use AI techniques and develop methodologies 

to predict the remaining useful life (RUL) of automotive batteries and turbochargers. 

The second main objective is to generate an objective and standardized dataset upon which 

vehicles’ computer systems’ performance can be tested within a simulated road environment. The 

CODA research project will be used to achieve this aim. CODA is a benchmarking software 

package and the associated data sets that rigorously assess the degree of functionality of vehicles 

on European roads. This solution can be used to validate real-time failure detection and prediction 

AI algorithms on a large, dynamic, real-world dataset. [8] The third main aim is to develop a tool 
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to monitor the performance of vehicles under a simulated road environment. The developed tool 

shall facilitate vehicle fleet monitoring towards the objective of reliability and safety enhancement. 

Finally, the last but least important objective is the design of a real-time failure detection and 

prediction model for the automotive components through data received using vehicle telematics, 

which are real-world data and can validate the predictive models. 

This leads to a new generation of control strategies, which are best suited to continuous real-time 

adaptation and personalized learning. Research in this area has grown very rapidly to cover many 

aspects dealing with AI-inspired advanced modeling. It is suggested, however, that a new research 

emphasis should be placed on the actual vehicle autonomous functions control architecture itself. 

Hence, the pipeline of these AI functions into a control methodology is considered as a new and 

distinctive feature of the proposed research. This architecture is required to have variable 

resolution of intervention, as well as a self-diagnostic capability. 

The developed technology becomes elegant in its intervention and hence will be essentially 

transparent to the driver and passengers. Aircraft intervene to prevent hazardous events, but 

without creating stress or doubts about skilled human control. Current automotive experimental 

vehicle infrastructures are large vehicles "Rube Goldberg's", cobbled together usually for a specific 

prototype application. They struggle to combine genuine human safety with actual, as opposed to 

nominal, research data returns. The proposed vehicle control system aims to integrate the decision-

making processes and take from the driver the major burden of traffic control. 

 

 
 

Fig 2 :Schematic diagram of the traffic scene at the intersection.  

 

2. Artificial Intelligence in Vehicle Control 

AI, specifically machine learning, is beginning to have a big impact on vehicle control. Vehicles 

with over-the-air updates and the Internet of Things are becoming cyber-physical systems. They 

are constantly changing their software. Typically, the impact of software changes on vehicle 

control is currently addressed by extensive testing. Tests fail for those unforeseen blending of 

inputs, such as failures of sensors or obstruction of sensors, that require control reprogramming. 

Those non-failure changes that require reprogramming also benefit from machine learning by 

using the data created by the many vehicle miles of everyday usage. 
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The use of machine learning to acquire maps and assist vehicle control is now the most widespread 

application of AI to vehicle control. Mobileye and radar (LIDAR acting on their behalf) are the 

best-established developers of vehicle map infrastructure. Their product offers driving assistance 

features for ADAS and L3 operations. The data + AI business model includes being an established 

supplier for driver experience mapping for HD maps for automated vehicle operation. The 

consumer-to-creator business model may be faced with current perception limitations in 

developing an IPC (Integrated Pathway Control) application for unknown future sensors. Creating 

such unknown needs for a History of Mapping and Machine Learning able to use real-world 

evidence for validation of a new map that will generate data suitable for a new self-driving feature. 

2.1. Machine Learning Algorithms in Vehicle Control 

Automakers worldwide have come a long way in automotive technologies such as advanced driver 

assistance systems (ADAS), partial or fully automated driving systems, and augmented reality user 

interfaces. These breakthroughs have been made largely possible by the increasing application of 

sophisticated machine-learning algorithms in the automotive realm. Machine learning is an 

artificial intelligence application that uses statistical algorithms to enable computer systems to 

learn new tasks. The data-driven performance of machine learning algorithms in pattern 

recognition, perceptual cognition, and clustering has seen them steadily replace traditional signal 

processing, rule-based systems, and other conventional algorithms in the development of advanced 

vehicle control and diagnostics. 

In conventional control algorithms, it is conventional for the vehicle's motion to be determined in 

parts based on the human driver's lead and in parts based on the vehicle and traffic regulations. 

This necessitates the intervention of the human driver at crucial moments such as overtaking, 

entering a highway, and negotiating including towns and construction sites. Although human 

drivers have an unrivaled cognitive ability to assess situations, detect, and respond to other road 

users, they are prone to making errors whenever they are overwhelmed and/or mentally and 

physically fatigued. 
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Fig 3: Deep Learning and Control Algorithms of direct Perception for Autonomous Driving  

 

 

2.2. Neural Networks for Adaptive Control Systems 

The most straightforward approach to using AI for control is to program control rules into a 

computer as an expert system. Expert systems can express the specific and complex knowledge of 

human experts. They can solve specific problems such as controlling a specific process or machine. 

Expert systems can be based on if-then rules to a certain extent and can adapt to new situations. 

However, they do not acquire knowledge by learning from experience. The decisions of expert 

systems are based on the knowledge given, and the expertise of the expert system depends strictly 

on the knowledge and the rules in the system. Therefore, the knowledge and rules used in the 

expert system are very important. The quality of an expert system is mainly determined by the 

effectiveness of the knowledge processed. However, standard expert systems may require lengthy 

knowledge acquisition by experts. In the case of control systems for dynamic and complex plants 

such as fast automotive vehicles or robots, appropriated knowledge is hard to fully exploit by 

control expert systems. Neural networks exploit the learning capability and the parallel structure 

of the brain and have been used in the automotive industry for controlling a variety of subsystems 

such as transmissions, engines, steering, braking, and suspensions. In these applications, the ability 

of neural networks for adaptation and self-learning is exploited, and they are used to replace the 

transmission developed through system identification. 

 

Fig 4: Indirect Adaptive Control Using a Neural Network With Online Training 

3.Artificial Intelligence in Vehicle Diagnostics 

Real-time condition diagnostics provide the operational feedback required by many of the 

advanced control and optimization techniques to improve vehicle performance or passenger 

amenities. The diagnostics can identify defective components or otherwise anomalous behavior of 

the vehicle. The advent of advanced diagnostics is the increased use of electronic control systems 

for various vehicle systems and components. Traditional diagnostic approaches address the 

requirement for monitoring complex electronic vehicle control systems, with the analysis of 

signals used in their operation. Tools incorporating state-of-the-art signal processing techniques 

are now the norm. 
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The advent of more sophisticated artificial intelligence and machine learning approaches is seeing 

the incumbents augmented with these tools. Data-driven diagnostics are predicated on having 

vehicle signals available or being able to easily record them. Most diagnostics used in mass-

produced vehicles in the current market are model-based methods. These methods are based on 

the comparison of measured signals, extracted from the numerous controlled stress tests to 

predetermined thresholds. Advanced diagnostics generally have no general noise rejection 

capability. The translational and rotational dominance observed during normal operation of the 

vehicle aids in the diagnosis of any subsystem malfunction. 

It is the non-translational and non-rotational mechanical movements that are associated with any 

of the vehicle subsystems that reveal their operation. The ability to remove translational and 

rotational sensations through the use of hydraulically actuated and semi-active Actively Controlled 

Engine Mounts (ACMs) and Active Suspension Dampers (ASDs) hampers the feel of the vehicle 

operator. The haptic feel at the vehicle steering wheel of the mechanical nature of any subsystem 

fault is undesirable. The deliberate lessening of the feel of the operational systems has had an 

impact on the feel of the electric vehicle response. The application of advanced artificial 

intelligence and machine learning techniques provides avenues to restore the haptic feel 

experienced by the vehicle operator and an integrated interrogation of the electronic signals, 

available through the electric vehicle control system, using the keyword 'vehicle'. 

3.1. Fault Detection and Diagnosis Using AI 

The problem of fault diagnosis of vehicle faults has attracted considerable attention among 

researchers. One of the reasons for the increased interest in the field is that it has both economic 

and safety implications. In this context, machine learning-based models have shown some promise 

in the area of vehicle fault detection and diagnosis. 

In a work by Pan and Tang, a fault diagnosis model based on the accumulated energy signature 

analysis method was developed. The AE method bears certain advantages such as wavelet-based 

signal analysis and feature extraction. The support vector machine was used as the learning 

algorithm and was implemented with success. 

Kundu and Harb also developed a fault diagnosis model. Normal acceleration, jerk acceleration, 

harsh braking acceleration, and power cycling were obtained from a single-dimensional 

acceleration signal. These signals formed the inputs of an artificial neural network model trained 

with a backpropagation algorithm. 

Robles et al. produced a system that could monitor the ever-changing behaviors of a train vehicle. 

A variety of variables were selected, including velocity, acceleration, environmental variables, 

maintenance records, and maintenance events, which were used to build the artificial neural 

network. Results showed that this technique can be successfully implemented and reduce track 

access costs. 
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Further contributions in the optimization of preventive maintenance policy of railway 

infrastructures have been reviewed by Robles, et al. The cost of corrective maintenance was above 

average which led to the conclusion that optimization, based on the detection of a range of faults 

and their prognosis during the period indicated by this study, recognized a significant advantage 

in enhancing the management of installations. In this context, incorporating a damage prognosis 

insight into the existing system was expected to support the optimization of the rail maintenance 

policies, notably through cost reduction. However, the results from fault predictions depend to a 

large extent on the quality and quantity of available condition monitoring data. A recognized 

research gap is the limited availability of appropriate low-cost measurement techniques for 

multidimensional monitoring of the structure of a vehicle. 

 

 

Fig 5: Fault Diagnosis of Photovoltaic Systems Using Artificial Intelligence 

 

3.2. Predictive Maintenance with AI 

To enable predictive maintenance for the automotive industry and increase the service life of 

vehicles, both safety and operational performance, while reducing costs, the development of AI-

based tools that can forecast the occurrence of defects in key vehicle components is of utmost 

importance. By using machine learning techniques on vehicle data, not only can the key 

deficiencies in-vehicle components be detected, but they can also be forecasted. This chapter will 

introduce several AI tools focused on predictive maintenance for the automotive industry, 

including AutoPrognosis, Mastering Auto-Top-off, VMI, One-Tube, PdM, etc. Recently, AI-based 

tools have been successfully developed in the domain of automotive maintenance, aiming to 

improve the performance of predictive maintenance to increase operational availability and lower 

support costs. 

In the automotive industry, the focus is mostly on residual useful life (RUL). The excitation of 

predictive alarms is not useful because the service cannot be rescheduled ad hoc in proximity to 

the alarm condition. The creation of proper warnings is not the only task assigned to the RCM 
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approach, which also provides important information about the size of the opportunity windows. 

Larger opportunity windows are preferred, especially for components characterized by very long 

refurbishment procedures, for the maintenance activity. 

4. Case Studies 

4.1 Case Study 1: Maximizing SoC through Real-time Dynamic Management (Airdrive Intelligent 

Energy Management) 

We now present a use case of dynamic charging for a real-world implementation, in the form of 

the Airdrive intelligent energy management system. Airdrive owes its principles to a fundamental 

property of lithium-ion batteries, which have highly non-linear and highly temperature, 

concentration, charge, and discharge-rate dependent power and energy charge-processing 

capabilities. Most lithium-ion batteries are operated at moderate ambient temperatures with no 

attempt to alter the internal temperature of the cell. This implies that the effective rate of charging 

or discharging is strongly affected by the thermal control of the cell being charged or discharged. 

A single cell can sustain or accept very high charge/discharge power levels, in a very wide SoC 

range, without showing significant indications of aging. Operating the cells at high SoC at high T 

can cause the highest aging if these conditions are sustained for prolonged periods with no attempt 

to optimize the charge acceptance and dissipation. Such rates can be achieved when special 

conditions are present. These unique charging properties imply the potential to use them in 

everyday life. 

However, there are high-temperature ranges in which the cells must not be rapidly charged or 

discharged: the charging and discharging currents above the stopping point would produce the 

conditions that engineers directly involved in Airdrive technology observed in the test records of 

a few thousand cars over the last three years. A use case where short-term store fast refueling 

would be beneficial is electric car sharing: electric car sharing operators can benefit from storing 

the cars between charges at high SoC because the users expect a decent level of driving experience 

at the moment of car pickup. Stabilizing or leveling the SoC distribution in a car fleet throughout 

each day would also benefit grid operators, who would have predictive maximum peak demand 

disposal. Each single battery could store additional energy during the morning relatively low-

demand time, and this additional energy could be used to buffer the maximum demand during 

regularly occurring higher-demand hours. The tiered fluctuating energy use peak power can also 

cause a less frequently occurring high demand, which would be predictable by looking at the 

maximum aggregate energy demand, as discussed in the following section. The net result would 

be a lower demand on the generating system during the higher demand hours and a better load 

leveling, reducing the generating and distribution system capacities wastage during less frequent, 

less predictable, but cumulatively expensive grid emergencies. 
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4.1. Autonomous Vehicles                                                The search for vehicle control autonomy 

has been underway for many decades. The recent advances in machine learning and the so-called 

reinforcement learning, have enabled the possibility of achieving such control for a plethora of 

public domain virtual driving simulation environments. Machine learning techniques have made 

much progress in specific driving situations. Control is not only probing local minima in virtual 

driving simulations but also encoding common sense, values, and ethical behavior through one 

way of training a neural network.These examples demonstrate the potential of AI and ML to 

address critical vehicle control challenges: high-level perception needs to arrive at an accurate 

representation of the scene, predicting the behavior of other actors and hence being able to plan 

around them, and most importantly learning an efficient way to cope and adapt to all of these given 

the very large number of input features and states that have to be used for decision-making. 

 
Fig 6: Study Says Tesla the Most Trusted Brand To develop Autonomous vehicles  

 

5. Challenges and Future Directions 

Vehicular safety is a key concern, especially due to the severity of motor vehicle accidents. Major 

advances in multiple technologies have been challenging, but to make highly intelligent vehicles 

possible and pervasive, there is no solution but to deepen research in AI. AI has become a single 

body of knowledge in computer science taking up the challenges of software, algorithms, and 

systems that can reason and act rationally and effectively like humans. This paper discusses our 

research in developing functioning AI demonstrators that can enhance the control of road vehicles, 

by autonomously ensuring safety and a good level of user satisfaction. It also conveys our 

conviction that the specific challenges of AI make it a fertile ground for research in other fields, 

particularly in computer science-related subjects.The need for considerably enhanced vehicle 

control capabilities has recently given renewed interest to AI. In this paper, we illustrate this by 

presenting two functional AI demonstrators that we have been building in recent research: 

SIRoNE4 and SIRoNE-DIAG. SIRoNE4 is an autonomous mobile robot that is built upon the 

software of SIRoNE, a three-wheeler electric vehicle that is being used in an extensive mobility 

study. SIRoNE-DIAG does not physically alter the real vehicle. It only uses its ECU to observe 

and alter data flows. Also, an important area of AI research consists of the efforts to explain and 

https://www.cnet.com/roadshow/news/tesla-most-trusted-to-develop-autonomous-vehicles-self-driving-cars/
https://www.cnet.com/roadshow/news/tesla-most-trusted-to-develop-autonomous-vehicles-self-driving-cars/
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have agents report decisions. What operation did the agent implement? What simple variables were 

used to implement it? What is the model in the environment used by the agent to implement its 

operation? When do the values of simple variables trigger the operations the agent implements? In 

this sense, a theoretical framework has been proposed. Several existing cognitive architectures can 

also support the implementation of these functionalities. 

 

Fig 7: Challenges and Future Directions 

5.1.  Ethical Considerations in AI for Vehicles 

Arguably, the most significant application of AI in vehicles is vehicle control. One can reasonably 

expect that AI can provide more sophisticated and safer vehicle control than is currently available 

through traditional microprocessors and digital signal processing technologies. Nevertheless, one 

is also mindful of the ethical issues created by such sophisticated use of AI. One might ask, "Do 

we trust ourselves not to perform aggressive driving?" AI technologies may naturally resort to 

actions (like maneuvering or other actions commonly associated with more aggressive driving) 

that are not malign in themselves but may be socially dangerous. Safe world models lead to safe 

level planning according to which the future states that consider the value-based safety function. 

The reactions of human drivers under stress are taken into account. We have developed a new 

operational design methodology, which ensures that the more complex machines are transparent 

to the human users. Concerning explicit traffic issues on motorways, we have developed smart 

cruise control or ACC (Adaptive Cruise Control) which safely deals with free space in front of the 

vehicle. 
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From an ethical viewpoint, moral decisions made by AI in vehicle control touch upon a serious 

heavy challenge, which threatens the groundwork of AI itself. Ethical thinking has more than 2,000 

years of experience in establishing the essence of values (like safe operations) within complexities. 

It has explored groundwork and backgrounds, which seem naïve to even the keenest contemporary 

AI researcher. Our approach is to supply the ground with ethically important values and to use 

these as a target and background when dealing by better understanding and assessing the 

complexities that had been identified earlier. AI constructs and applications take advantage of this 

human heritage. Our AI systems utilize the same background when they interact with humans and 

share the very same interdisciplinary ethically perceived activities. Nevertheless, to fully embrace 

the benefits of AI in the case of motorways, we need to reshape our car-based technologies and 

make them accessible once more. The AI knowledge model, comfort, automation, and 

collaboration provide a first insight into such a reshaped foundation. The understanding of 

perception coheres nicely with ethically informed AI vehicle control, and vice-versa. The onset of 

perception is the establishment and recognition of itself. At an early age, infants are capable of 

distinguishing cars from other members of the animal kingdom, such as cats and buses. 

 

 

Fig 7 : Ethical Considerations When Using Artificial Intelligence 

5.2. Potential Technological Advancements  The incorporation of artificial intelligence (AI) into 

current technology leads to considerably enhanced vehicle operation and maintenance systems. 

Both the partials (PHEV) and full hybrid electric vehicles (FHEV) utilize data-driven techniques 

like fuzzy logic, neural networks, and genetic algorithms to control the complex power flows 

between both the engine and the electric motors, and the battery and the engine/emission control 

system. The use of hybrid technology significantly increases the performance of the control 

strategies selected, incorporating both closed and open-loop energy management strategies. This 

significantly advances vehicle fuel economy, and the use of direct marketing strategies and 

detailed mapping further advances this. The ever-increasing design complexity and the consequent 

increased powertrain system interaction have the potential to significantly improve through the use 

of these advanced control strategies. These control strategies and the support systems used also 

require the FHEV/PHEV control systems to robustly lend into safe modes/initiatives as required. 
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The application of these somewhat classified technologies to vehicle control systems necessitates 

vast advances in system identification capabilities and the management of sensors and actuators. 

They must be constructed robustly to the point of ensuring that the vehicle can operate far from 

the nominal conditions without sub-system and vehicle damage occurring. This advanced use of 

AI-type algorithms significantly adds to the cost of these vehicles because of the relatively 

expensive calibration and the vehicle prototype testing that was required. Furthermore, BIW 

designs then had to be constructed to accommodate this additional needed complexity, and the 

battery compartment, the motor compartment enclosure, the engine/power management control 

systems, and the transmission design/cost could all substantially change. These types of vehicle 

control system-advanced management features must sensibly interconnect with the other vehicle 

safety programs, including ABS/ESC/traction control, and stability programs. The artificial 

intelligence advanced control strategies fit almost uniformly with the FMEA 3 supervisory 

controllers. Maintaining high fuel economy, system performance near the vehicle limits, and 

maintaining bilateral safety of smooth power flow asymmetric stresses organizational interaction, 

design complexity, and testing vehicles over a variety of driving regimes and vehicle terrains. 

6. Conclusion  

In conclusion, this paper highlights a unique application of AI that is yet to be addressed by 

researchers: an AI vehicle control and diagnostic system. We capitalized on the power of imitative 

learning to address vehicle control and diagnostic operations governed by human decision-making 

entities, commonly termed drive-by-wire systems. Although we applied the model on wind 

systems, it is not optimally tuned to our best knowledge, and we call on efforts through the AI 

community to come up with a widely applicable DNN-RNN model for vehicle control and 

diagnostic operations. Such models can be used to address both autonomous and non-autonomous 

vehicles. 

In the same way that pre-assembly operations are essential for the proper operational performance 

of the gear system in wind power systems, drivetrain, and gearbox issues are essential for energy 

optimization in vehicles. Advanced monitoring and assembly of vehicles can provide efficient 

human filtering and time-stamped annotated data of vehicles driven by humans. In this article, we 

described the possibility of using this data to develop both drivetrain vibration detection and gear 

assembly. To the best of our knowledge, both aspects have not been reported as an AI solution and 

might be of interest to an extended audience, especially for the vehicle community, since it forms 

a general control and diagnostic framework for vehicle applications. 

 

6.1 Future Trends  

Several future trends can be identified that will contribute to progress in developing the PID 

controller and diagnostics. Firstly, in the real-time on-board computers, the gradual migration from 

16-bit microprocessors to 32-bit ones is expected soon. The computational capability of 32-bit 

CPUs will provide an edge for more intensive and large-scale applications that artificial neural 
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networks (ANNs) and fuzzy logic (FL) support. Advanced embedded computing, through the 

significant expansion of memory size (from Kbytes to Mbytes) and the increasing quantity (2 and 

more) and speed (+1/2-1/3) of parallel microprocessors in embedded modules is expected. To a 

significant extent, all of these developments can be expected to fulfill the NANIDIE objectives 

dictated by the forthcoming changes in legislation and vehicle and electronics architecture. 
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