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Abstract 

 

This work presents an approximate way to determining the natural frequencies of thin-walled 

cylinders. Nonetheless, a unique, simple device based on the virtual work concept has been 

developed to estimate the intrinsic frequencies and vibration amplitudes without the need for 

complex numerical resolution. Furthermore, the model's applicability is broadened to encompass 

all common constraint scenarios. Finding the natural frequencies of a continuous cylinder may be 

reduced to an eigenvalue problem using a matrix whose components are determined solely by the 

cylinder's geometrical characteristics, the material's mechanical properties, and known numerical 

parameters. These are pre-estimated for specific boundary circumstances, such pinned or clamped 

end limits. The proposed formulation may handle any combination of constraints, but is restricted 

to the analysis of a pinned-pinned cylinder for the purpose of conciseness. The results of the FEM 

study were used to assess the reliability of the model. According to these assessments, the 

maximum inaccuracy in relation to the precise solutions for the lowest natural frequency for all 

mode forms of the pinned-pinned case is around 3%, offering a superb trade-off between accuracy 

and usability. 

 

Keywords: Circular Cylindrical Shell, Virtual work principle, Natural Frequency, Eigenvalue 
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1.INTRODUCTION 
 

Researchers are interested in characterizing the vibratory behavior of thin-walled cylinders 

since shells are widely used as structural components in many engineering applications. In 

particular, estimating their natural frequency is critical to minimize catastrophic defects 

throughout the manufacturing process and regular usage, when time-varying pressures often stress 

these parts. 

Thin-walled cylinders' continuous structure makes investigating their free vibrations 

significantly more challenging than a discrete multi-degree-of-freedom system. The integration of 

partial differential equations seldom yields an accurate closed-form solution, which is somewhat 

complex. 

Finite element analysis, numerical methods and simplified analytical models [1-20] are 

more commonly used to reach the resolution. However, the finite element technique (FEM) may 

necessitate a convergence analysis. On the other hand, the use of simplifying assumptions allows 

for an analytical solution to the problem at the expense of accuracy, whereas advanced numerical 

techniques allow for the resolution of exceedingly precise models but can be difficult to program. 

This innovative model, on the other hand, combines high accuracy with user-friendliness. It draws 
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inspiration from [4], which gave the natural frequencies via an explicit series of algebraic 

equations that did not require intricate or repetitive numerical solutions. The dynamic equilibrium 

equations are obtained as displacement functions, beginning with Love's theory for thin-walled 

cylinders, which has been modified by Reissner and simplified by Donnell's assumptions. Then, 

Hamilton’s principle concept is used. Similar to Rayleigh's approach, the assumption of suitable 

eigen functions permits a quick solving process based on the solution of a series of basic algebraic 

equations. However, depending on the mode shape order, this technique includes two alternative 

sets of eigen functions and is limited to clamped-clamped cylinders. 

 

A reformulation of [4] is suggested in this study. The constitutive, compatibility, and equilibrium 

equations are specifically the same. However, the virtual work principle is applied and several 

eigen functions are first postulated. Furthermore, an eigen value problem is derived from the 

cascaded algebraic resolutive technique. Faster resolution is achieved using the novel approach, 

which is easily adaptable to any constraint situation, not only the clamped-clamped one. This 

publication, for instance, just presents the findings for a pinned-pinned cylinder. The suggested 

method's dependability is evaluated by contrasting its outcomes with those of the FEM analysis. It 

has been determined that the model is both effective and efficient with a maximum inaccuracy of 

3%.  

 

2. THEORY AND METHODOLOGY 

A thin-walled circular cylinder with a finite length (l), constant thickness (h), and mean radius (a) 

composed of a material with density (ρ), Young's modulus (E), and Poisson's ratio (v) is shown in 

Fig.1 along with its orthogonal local reference system, which consists of longitudinal direction x, 

circumferential direction s, and radial direction r. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Coordinate System of a Thin-walled Cylinder and its Geometry 

 

The dynamic equilibrium equations and compatibility equations are constructed using Love's 

theory [2], which has been modified by Reissner [7] and Donnell's assumptions [11]. The internal 

forces and moments are then expressed as functions of the deformations using the constitutive 

equations. Forces and moments are produced as functions of displacements by substituting the 

compatibility equations into these later equations. After adding these forces and moments to the 

dynamic equilibrium, the motion equations that follow are obtained: 
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The mathematical process that yielded (Eq.1) is omitted for the purpose of concision. The virtual 

work principle (Eq. 3), which states that for any virtual displacements that fulfill the requirements, 

the virtual work 𝛿W of all forces applied to the system, including inertial actions, is zero, is 

presented using the equations of motion and Hamilton's notion. 
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Since 𝛿𝑢𝑥, 𝛿𝑢𝑠𝑎𝑛𝑑 𝛿𝑢𝑟 are arbitrary virtual displacements, (Eq.3) is only valid if each of the three 

addends is null.  

As in [4], adopting appropriate displacements 𝑢𝑥, 𝑢𝑠, and 𝑢r as eigen functions of the issue allows 

for a more straightforward mathematical approximation approach to the problem of free vibrations 

of cylindrical shells. The free vibrations of a thin-walled circular cylinder consist of m 

longitudinal half-waves and n circumferential waves. Consequently, each mode form is 

characterized by a pair of m and n values. Consequently, each mode form is characterized by a 

pair of n and m values. Circumferential waves are unaffected by boundary conditions, in contrast 

to longitudinal half-waves, which depend on them. This is similar to the transverse vibrations of 

beams that are limited by the same restrictions. As such, the same hypotheses that were put 

forward in [4], carefully chosen to ensure orthogonality, are also considered. 

 

                           ux = Ax
d

dx
fr(x) cos(nθ) cos (ωt)

                   us = Asfr(x) sin(nθ) cos (ωt)

                    ur = Arfr(x) cos(nθ) cos (ωt)

}                                                                           (4)                                                                               

where 𝑓𝑟(𝑥) is the eigen function of the beam subjected to the same constraints of the cylinder 

under analysis. For example, for a pinned-pinned beam,  𝑓𝑟(𝑥) = 𝑠𝑖𝑛𝛽𝑖𝑙
𝑥

𝑙
, where 𝛽i 𝑙 are the roots 

of the related frequency equation sin𝛽𝑖𝑙 = 0.  

 

All boundary conditions may be applied to the following formulation, though, because it is quite 

broad. 

A system of three equations is produced by taking into consideration (Eq. 4)and normalizing (Eq. 

3) with the cylinder length 𝑙. 
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The subsequent matrix formulation is obtained by substituting (Eq. 4) in (Eq. 5) 

(𝐷̿ − Δ𝐼)̿{𝐴} = {0}                                                                                                                                         (6)                       

where 𝐷̿ is the following matrix, 𝐼 ̿ is the identity matrix and {𝐴} = {𝐴𝑥; 𝐴𝑠; 𝐴𝑟} is the unknown 

vector containing the displacements amplitudes in the three directions,  
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𝑓𝑟
𝑘(𝑋) is the kth order derivative of 𝑓𝑟(𝑋).                                                                                          (11)                                                                                     

It is possible to estimate these integrals a priori without knowing the actual cylinder dimension 

because of the normalizing by the cylinder length. They may therefore be used to analyze the free 

vibrations of any cylinder that is subject to the same restrictions after only having to be computed 

once for every constraint condition. 

Finally, as demonstrated by (Eq. 6), the natural frequency of any thin-walled cylinder may be 

computed with ease by working out the eigen values problem of the matrix  𝐷̿. The natural 

frequency may be derived using the three eigenvalues ∆1, ∆2 and ∆3 in the following  way, 

𝑓𝑖=
1

2𝜋
√

𝐸∆𝑖

(1−𝜈2)𝜌𝑙2
                        for i=1, 2,3                      (12)                                                                                                      

     

In summary, the eigen function defining the transverse free vibrations of a beam exposed to the 

same restrictions as the cylinder is first identified in the suggested analysis of free vibrations of 

cylindrical shells. The matrix 𝐷̿  is then calculated for a pair of values for m and n. The matrix 𝐷̿ 

eigen values are used to calculate the natural frequencies and its eigenvectors include the 

displacement and amplitude ratios of each modeshape. 

 

3. RESULTS AND DISCUSSION 
 

For a pinned-pinned cylinder with the following characteristics: a = 76 mm, l=305 mm, h 

= 0.254 mm, ρ = 7833 kg/m3, E= 207 kN/mm2, and v = 0.3. Table 1 displays the frequencies 𝑓1, 

𝑓2 and 𝑓3 are listed for m < 4 and n ≤ 10. They are adequate to see that 𝑓1 is less than 𝑓2 and 𝑓3 by 
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an order of magnitude. As a result, the frequency is associated with the largest risk of redundancy. 

Furthermore, 𝑓1 has a minimum for fixed m, which happens for a greater value of n as m grows, 

whereas 𝑓2 and 𝑓3 are monotonically growing by both n and m. 

 

 

 

 

Table 1: Natural frequencies for m < 4 and n ≤ 10. 
 

n 
m=1 m=2 m=3 

f1(Hz) f2(Hz) f3(Hz) f1(Hz) f2(Hz) f3(Hz) f1(Hz) f2(Hz) f3(Hz) 

1 2886 10009 17209 6445 14059 21944 8556 17890 29228 

2 1265 14889 26403 3677 18061 29947 5821 21647 35508 

3 656 20923 36632 2178 23194 39414 3896 26222 43820 

4 423 27319 47298 1396 29012 49558 2681 31491 53176 

5 372 33847 58183 985 35177 60072 1931 37225 63123 

6 431 40433 69190 792 41523 70807 1477 43249 73434 

7 551 47048 80272 751 47971 81681 1227 49455 83983 

8 705 53681 91403 819 54481 92649 1132 55780 94694 

9 887 60325 102566 956 61031 103683 1158 62184 105520 

10 1092 66976 113753 1139 67607 114764 1272 68644 116431 

 

 

Table 2 shows the amplitude ratios only for n = 4 and m ≤ 3. While for other combinations of m 

and n it provides comparable results. The amplitude at the lowest natural frequency 𝑓1 is 𝐴𝑟, 

(ratios less than unity) indicating primarily radial motion. Similarly, at frequencies 𝑓2 and 𝑓3, 𝐴𝑥 

and 𝐴𝑠 predominate, resulting in longitudinal and circumferential modes. 

 

 

Table 2: Amplitude ratios for m ≤ 3 and n = 4. 
 

 m = 1 m = 2 m = 3 

𝐴𝑥/𝐴𝑟 𝐴𝑠/𝐴𝑟 𝐴𝑥/𝐴𝑟 𝐴𝑠/𝐴𝑟 𝐴𝑥/𝐴𝑟 𝐴𝑠/𝐴𝑟 

f1 0.014 0.252 0.011 0.255 0.008 0.249 

f2 3.697 1.897 1.020 2.155 0.521 2.561 

f3 0.240 4.097 0.259 4.380 0.288 4.822 

 

 

The result with those from FEM study was done in Ansys. In analysis SHELL181 linear elements 

are selected and around 36433 elements are observed to analyze a thin-walled circular cylinder. 

The errors of all theories with respect to the experiment are also shown in Table 3.  
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Table3: Present model results and FEM results along with errors between them 

 

  m=1 m=2 m=3 m=4 

n f1(Hz) Error f1(Hz) Error f1(Hz) Error f1(Hz) Error 

  Present FEM (%) Present FEM (%) Present FEM (%) Present FEM (%) 

1 2885.9 2886 −0.0004 6444.7 6445 −0.010 8555.7 8557 −0.018 9527.5 9530 −0.021 

2 1265.1 1265 0.011 3676.6 3678 −0.025 5820.8 5823 −0.043 7344.4 7349 −0.055 

3 656 654.8 0.19 2178.1 2179 −0.034 3896.1 3899 −0.071 5413 5418 −0.096 

4 422.7 418.7 0.96 1396.4 1396 0.0093 2681.1 2684 −0.092 3986.1 3992 −0.14 

5 372 364.7 2.01 985.3 983.5 0.18 1931.4 1933 −0.082 2994.2 2999 −0.17 

6 431.4 422.6 2.07 792.1 788.1 0.51 1477.2 1477 −0.013 2322.6 2327 −0.18 

7 550.6 542.2 1.56 751.4 745.7 0.76 1226.6 1225 0.12 1884.4 1887 −0.15 

8 705.3 698.2 1.02 818.6 812.7 0.72 1131.6 1129 0.23 1626.4 1628 −0.10 

9 886.7 881.8 0.56 955.9 951.5 0.47 1157.8 1155 0.21 1515.7 1517 −0.072 

10 1091.9 1090 0.17 1138.9 1137 0.15 1272.5 1272 0.048 1525.7 1528 −0.12 

11 1319.7 1322 −0.18 1355.2 1358 −0.18 1448.9 1452 −0.20 1629.6 1634 −0.28 

12 1569.7 1578 −0.51 1599 1607 −0.50 1669.5 1678 −0.49 1803 1812 −0.50 

 

 

A relative error is defined as follows: 
 

𝐸𝑟𝑟𝑜𝑟𝜔 =
𝜔𝑝𝑟𝑒𝑠𝑒𝑛𝑡−𝜔𝑎𝑛𝑠𝑦𝑠

𝜔𝑝𝑟𝑒𝑠𝑒𝑛𝑡
 × 100%                                                                                                       (13)     

                                                                                                                                                           

The correctness of the results was evaluated, with a maximum error of 2.07% for m = 1 and n = 6 

as observed in Table 3 

There is strong consistency between the FEM results and those obtained by the proposed 

model, which it can be observed in Fig2. For the sake of simplicity, the comparison is made for 

frequency 𝑓1s versus the value of n for fixed m=1,2,3 since 𝑓1 is considered as it is lowest 

compared to 𝑓2 and 𝑓3. 

 

 

 

Figure 2. Comparison between the Natural frequency 𝑓1 (obtained by the proposed 

model and FEM results) and n for m=1,2,3.  
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4. CONCLUSION 
 

This study created a novel method to study the free vibrations of an isotropic circular cylindrical 

shell under different boundary conditions. The cylinder equations of motion of Donnell-Mushtari's 

shell theory were introduced in the principle of virtual work. The eigenvalue problem was the only 

remaining component of the greatly simplified mathematical approach. The eigen function of a 

beam as constrained as the cylinder was incorporated, and the resulting system was normalized to 

the cylinder length. The findings for a pinned-pinned cylindrical shell were contrasted with a FEM 

research that produced a maximum inaccuracy of 3%. Because it combines excellent accuracy and 

ease of use, the novel model is ideal for performing exploratory research on the resonance state of 

shell structures. It may be extended to any boundary conditions as well. Pinted, free end, and 

clamped cylinders can be handled with a specific formulation. The accuracy of the model will be 

assessed in subsequent studies using various combinations of constraints. 
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