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Abstract 

The latest Convolutional Neural Networks (CNNs) incorporate a greater number of convolution 

layers compared to previous iterations, aiming to enhance classification accuracy and super-

resolution. While numerous researchers concentrate on minimizing network size to lower 

computational costs while maintaining accuracy, others explore optimizing individual 

convolution layers to reduce computational expenses. In this paper, we introduce a novel 

approach to approximate computing utilizing 4-2 compressors, applied to both Baugh Wooley 

and Booth multipliers. Convolution layers within CNNs typically employ multiply-and-

accumulate (MAC) operations. We have integrated approximate multipliers into the adapted 

MAC structure to enhance the efficient utilization of Field Programmable Gate Array (FPGA) 

resources. Our results demonstrate that the proposed approximate compressors exhibit a 

reduction of 15.4% in the area-delay product (ADP) and 35.7% in the area-power product (APP) 

compared to previous design methodologies.  
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1. Introduction  

Y. LeCun et al. introduced the Convolutional Neural Network (CNN) [1, 2], which has gained 

increasing popularity due to its superiority in tasks such as image recognition, classification, and 

speech recognition compared to other deep learning algorithms. CNN can be delineated into two 

main components. Firstly, there is the training phase where, for instance, it learns the distinctive 

features of each image within the database to facilitate image classification. 

The subsequent phase involves classification. Here, CNN scrutinizes the features of a new input 

image and endeavors to correlate them with the training data, thereby determining the nature of 

the image. We will delve deeper into the intricacies of CNN in the subsequent section. Accurate 

image classification holds paramount importance. To enhance recognition accuracy, CNN 

necessitates additional convolution layers. For instance, AlexNet, depicted in Figure 1, which 

encompasses five convolution layers, clinched the top prize at the 2012 ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) with a top-5 error rate of 15.3% [3]. Nonetheless, 
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ResNet, the victor of ILSVRC 2015, augmented the layer count to 152 and attained a Top-5 error 

rate of 5.71% [4]. Table I delineates the Top-5 error rates from 2012 to 2015 at the ILSVRC, 

showcasing a substantial reduction as the layer count escalates. This underscores the 

indispensability of augmenting the convolution layers for heightened accuracy in CNN networks. 

However, when CNNs are integrated into hardware systems such as CPUs, GPUs, and Field 

Programmable Gate Arrays (FPGAs), the hardware expenses surge in direct correlation with the 

layer count. The reason lies in the intensive computational demands of convolutional layers, 

while fully connected (FC) layers require substantial memory resources [5]. To alleviate the 

computational burden of CNNs, diverse methodologies have been explored. Y. Gal et al. [30] 

proposed a Bayesian CNN approach tailored for small datasets, achieved by imposing a 

probability distribution over the CNN's kernel. X. Lin et al. [15] investigated binary CNNs, 

where weight and bias values are confined to {-1, +1} during runtime, resulting in a significant 

reduction in memory usage and computational expenses.  

Hardware accelerators encompass a variety of types of hardware, with Application-specific 

Integrated Circuits (ASICs) and FPGAs emerging as the most prevalent choices. Employing 

ASICs as hardware accelerators typically offers greater efficiency compared to FPGAs. 

Nevertheless, FPGAs boast greater flexibility, accommodating a wider range of applications than 

ASICs. Consequently, FPGA environments are gaining popularity owing to their superior 

energy-to-performance efficiency [7, 8]. Furthermore, recent research indicates that the 

performance of FPGA systems is comparable to that of CPUs and GPUs [9]. However, the 

primary weakness of FPGA systems lies in their extremely limited resources. To perform 

Multiply-Accumulate (MAC) operations, FPGA utilizes Digital Signal Processing (DSP) and 

Look-Up Table (LUT) blocks. Typically, only DSPs are employed for multiplication operations 

of dimensions × and b. As these operations are executed in parallel, the number of MAC 

operations corresponds to the number of DSPs utilized in the FPGA. D. Nguyen et al. [29] 

introduced the concept of double MAC, which effectively reduces the number of DSPs required 

by half. Nonetheless, this approach proves beneficial only for scenarios involving small bit sizes, 

such as 4 × 4 multiplications. Once the calculations surpass the capacity of a single DSP (e.g., 

exceeding 27 × 18 on the DSP48E2 within the Xilinx ZCU102 FPGA board), additional 

resources become necessary. For instance, two DSPs or one DSP along with supplementary 

LUTs are needed for computation. Z. Zhang et al. [30] suggested an alternative by amplifying 

the number of MAC operations simultaneously. In cases where DSP resources prove insufficient 

to accommodate all required multiplications within the network, LUTs are employed for the 

remaining multiplications, albeit with less efficiency. 
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Figure 1: Off-Chip Hardware Accelerator Architecture 

A multiplier comprises three key components: partial product generation, partial products 

reduction, and final addition through carry-propagate adders. Approximation techniques can be 

integrated into any of these stages. For instance, in [16], approximation methods are applied 

during the partial product generation phase. Another approach, known as partial product 

perforation, which involves omitting the generation of certain partial products, is explored in 

[17]. The efficacy of these techniques is assessed across different multiplier implementations, 

with power consumption and error rates compared for analysis. Meanwhile, during the partial 

products reduction phase, various types of adders, including half/full adders and 4-2 

compressors, are employed. Much of the prior research on approximate multipliers has 

concentrated on this particular stage. For instance, Esposito et al. [18] introduced an approximate 

half adder by streamlining a 2-1 compressor (half-adder) with an OR gate. By achieving a mere 

1/16 error probability, the full adder can be simplified using just one AND gate and two OR 

gates. Additionally, 4-2 compressors are frequently utilized to further reduce the partial product 

step compared to half/full adders. Another method for approximate multipliers is outlined in 

[19], where large multiplications are partitioned into smaller blocks, such as 2 × 2 multiplier 

blocks, and adjustable multipliers are constructed. Truncation methods have also garnered 

significant attention. For instance, C. Chang et al. [20] employed a multiplexer-based truncated 

array multiplier to diminish power consumption and area utilization. Achieving a balance 

between accuracy and computational cost, encompassing power consumption and area 

utilization, is crucial in implementing multipliers. Thus, it becomes imperative to ascertain the 

optimal equilibrium between these factors. This paper introduces low-power and area-efficient 

multipliers by proposing and employing novel approximate 4-2 compressors. Furthermore, the 

conventional Multiply-Accumulate (MAC) operation is adapted to perform two operations 

concurrently. The application of Convolutional Neural Networks (CNNs) in VDSR is utilized to 

validate the efficacy of these MAC operations. 
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1.1 CNN Architecture  

A CNN architecture comprises input and output layers, with hidden layers sandwiched in 

between, as illustrated in Figure 2. These hidden layers play a pivotal role in CNNs as they 

directly impact the accuracy of the model's outputs. Typically, the hidden layers consist of a 

sequence of components including convolutional layers (CONV layers), activation functions 

such as Rectified Linear Unit (ReLU), pooling layers, and fully connected (FC) layers. 

    

 

Figure 2: A Regular n-layer Neural Network  

CONV layers perform computations involving inputs, weights, and biases. These weights are 

commonly referred to as kernels. Illustrated in Figure 3, when inputs traverse the kernel, they 

undergo multiplication with the weights and subsequent accumulation with biases. This process 

involves matrix multiplications, enabling parallel computation. The number of outputs generated 

equals the number of kernels utilized in the operation. 

 

 
Figure 3: Convolution Calculation 

Activation functions are applied to the outputs of kernels. Rectified Linear Unit (ReLU) stands 

out as a commonly employed activation function due to its ability to mitigate the likelihood of 

gradient vanishing and its promotion of sparsity. ReLU functions by setting negative values to 

zero while preserving positive values, as elucidated in (1). 

h = max (0 , y), where y = wx + b                           (1) 
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Pooling is another pivotal concept in CNNs, characterized by its non-linear nature as it serves to 

decrease the number of features. Among various pooling methods, max pooling is the most 

prevalent. This operation entails extracting the maximum value from the values within a filter. 

Figure 4 provides a visual depiction of how max pooling is conducted. 

 

Figure 4: Max Pooling with a 2  ×  2 filter and stride = 2  

FC layers serve as the output layers in a CNN architecture. Following multiple CONV layers and 

max pooling layers, FC layers establish connections between every neuron in one layer to every 

neuron in another layer. The flattened matrix subsequently undergoes processing through an FC 

layer for classification purposes. 

1.2   CNN Hardware Architecture  

Figure 5 provides an overview of the CNN hardware architecture. Due to the extensive volume 

of data, weights are stored in external memory. The initial CONV layer receives input feature 

map data and weights from this external memory, then performs MAC operations. The outcomes 

are stored in a buffer, thereby minimizing data communication between the CNN hardware and 

external memory. Consequently, this setup also contributes to a reduction in power consumption. 

 

Figure 5: An Overview of CNN Hardware Architecture  

CONV layers are recognized as computation-intensive layers, whereas FC layers are identified 

as memory-intensive layers [14]. This distinction underscores our focus on reducing 

computational costs primarily within CONV layers. Conversely, FC layers necessitate substantial 

data retrieval from external memory, highlighting the significance of minimizing the number of 

weights associated with them. 
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Figure 6: A Conventional MAC Structure 

 

Figure 7 depicts a conventional MAC structure, serving as the computational engine for the 

CONV layer. Two n-bit inputs are multiplied, resulting in a product of 2n bits. Here, input "a" 

can be interpreted as input feature map data from the image, while input "b" represents a weight 

value from the kernel. The multiplied results are subsequently accumulated with other results 

from the same kernel, utilizing an adder. Upon completion of each operation within the MAC, 

the results traverse through ReLU before proceeding to the pooling layer for downsizing, as 

elaborated in the preceding section. 

 

2. Proposed methodology of MAC for CNN 

This study aims to offer a comprehensive review and comparative analysis of approximate 4-2 

compressors previously proposed in literature. Additionally, we introduce a novel approximate 

compressor, bringing the total number of analyzed compressors to twelve. These circuits are then 

utilized in the design of 8 × 8 and 16 × 16 multipliers, implemented in CMOS technology. For 

each operand size, we examine two multiplier configurations, featuring varying levels of 

approximations, both signed and unsigned. Our investigation underscores the absence of a 

singular optimal approximate compressor topology, as the most suitable solution hinges on 

factors such as the required precision, the signedness of the multiplier, and the error metric under 

consideration. 

 

The proposed approximate 4-2 compressor leverages the stacking circuit concept, initially 

introduced in [33] for designing hardware-efficient 6-3 and 7-3 exact compressors, and adapted 

herein for approximate compressor implementation. With four inputs x1, x2, x3, x4, a 4-bit 

stacker circuit produces four outputs y1, y2, y3, y4, where y1 is set high if any of the inputs is '1', 

y2 is set high if any two inputs are '1', and so forth. The behavior of a four-bit stacker is 

delineated by the following Boolean equations: 

 

y1 = x1 + x2 + x3 + x4 .......................................................................................(1) 
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y2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 ..................................................(2) 

y3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4.......................................................... (3) 

y4 = x1x2x3x4 ...................................................................................................(4) 

 

A. Partial Products Reduction 
 

The Partial Product Matrix (PPM) is minimized through a methodology akin to the Dadda 

multiplier, which employs multiple stages of compressors to diminish the maximum height of the 

PPM to two rows. Determining the maximum height involves working backward from the final 

stage. Utilizing 4-2 compressors yields heights of 2, 4, and 8. 

 

 

Figure 7: Reduction scheme for an 8 × 8 unsigned multiplier with C − N configuration  

 

Approximate 4-2 compressors exclusively operate within the 8 least significant columns of the 

partial-product matrix. The Carry and Sum outputs of approximate 4-2 compressors are indicated 

by dotted lines, while solid lines denote connections for full adders and outputs of exact 4-2 

compressors. Half adder outputs are represented by solid lines with a vertical bar. 

 

The reduction process employs heights of 16, 32, and so forth as the maximum thresholds for the 

various stages. Full and half adders are exclusively utilized when necessary to achieve the 

requisite reduction of the PPM. As illustrated in Figure 7, which serves as an example for an 

unsigned 8 × 8 multiplier in a C-N configuration, the diagram showcases the reduction scheme. 

In this depiction, the Carry and Sum outputs of the approximate 4-2 compressors are depicted 
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with dotted lines, while solid lines represent the outputs of exact 4-2 compressors and full 

adders. Half adder outputs are linked by solid lines with vertical bars. The arrowed lines depicted 

in Figure 4 illustrate the connections between the Tin-Tout pins of exact 4-2 compressors. 

Noteworthy are the full-adders situated in column #12 of the first stage and column #14 of the 

second stage, essential for receiving the Tout signal from the exact 4-2 compressor in the 

preceding column. In the C-N configuration, the 8 × 8 multiplier utilizes 9 approximate 4-2 

compressors and 8 exact compressors, whereas in the case of the 16 × 16 multiplier, the 

quantities of approximate and exact compressors are 49 and 48, respectively. It is crucial to note 

that the examined approximate compressors (excluding Yang1 and Lin) lack input symmetry, as 

the error is contingent upon the specific order in which the input bits are connected to the x1, x2, 

x3, and x4 inputsPut differently, the count value can vary when the inputs are permuted, even 

with the same number of inputs set to '1'. Conversely, the inputs of exact compressors can be 

rearranged without impacting system functionality. For instance, consider the Ha compressor: for 

the input x4x3x2x1 = 1100, the count value is one, whereas for the input x4x3x2x1 = 0011, the 

count value becomes two. Consequently, the error performance of a partial products reduction 

tree hinges on the specific connection of each signal to every input of the approximate 

compressors. In order to mitigate the error rate, it is essential to take into account the 

probabilities associated with the signals driving the inputs of the approximate compressors 

during the design phase of the partial product compression tree. This aspect has been overlooked 

in prior literature, rendering the design of the partial product reduction tree a challenging task. 

Additionally, without precise knowledge of the exact order of connections utilized in previous 

studies, it becomes challenging to reproduce (and subsequently compare) the results presented in 

prior research. 

 

3. Results and discussions 

A Modified MAC  

The conventional Multiply-Accumulate (MAC) structure depicted in Figure 8 processes one 

input data with one weight. To address the challenge of reducing the DSP usage in FPGA, a 

double MAC approach was proposed by [29]. However, the applicability of the double MAC 

method is limited to calculations involving small bit sizes. When the number of bits in the 

multiplication operation exceeds the DSP48E2 specification, requiring 27 × 18, two DSPs or one 

DSP with additional LUTs become necessary. Therefore, this paper proposes a modified version 

of the double MAC method aimed at optimizing FPGA resource utilization. 
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Figure 8:  (a) Four 2  ×  2 Kernel Convolution (b) A Modified MAC Structure. 

Figure 8 presents a modified MAC structure. Figure 15(a) illustrates an example of a four 2 × 2 

kernel convolution with a stride of 1. In the conventional MAC setup, DSPs are exclusively 

utilized for computing one kernel operation. Consequently, a total of 4 DSPs are necessary to 

process the four 2 x 2 kernel CONV layer. However, for deeper convolutions employed in high-

accuracy classification or recognition tasks, the available DSP resources in FPGA may prove 

inadequate to handle all MAC operations within the CONV layers. In such cases, the FPGA tool 

automatically converts the remaining MAC operations to LUTs during synthesis, albeit this 

automatic conversion from DSPs to LUTs by the tool is not an efficient approach. Nonetheless, 

multipliers, such as Booth and Baugh Wooley multipliers, are well-known for their optimization 

in terms of area, power consumption, and delay. Furthermore, these multipliers can undergo 

further optimization through the utilization of approximate compressors. This paper explores the 

application of approximate compressor designs on Booth and Baugh Wooley multipliers, 

integrated within a modified MAC setup, aiming for high performance and efficient resource 

utilization in FPGA environments. 

3.1 VDSR Hardware Structure  

CNN finds applications in various domains. This paper implements the modified MAC on 

VDSR, as depicted in Figure 16. A 256 pixel × 256 pixel input image from the host PC 

undergoes processing through 12 CONV layers on the FPGA board. With input data comprising 

14 bits, the previous multipliers are extended accordingly. Furthermore, in line with common 

CNN practices, the outputs from MAC operations are truncated to 14 bits. Both input image and 

weight data are stored in the DRAM within the FPGA. The ARM CPU embedded within the 

FPGA board receives commands from the host PC, facilitating tasks such as data transfer and 

CNN execution on the FPGA. Upon receiving the 'Run' command from the host, the FPGA 

initiates the CNN execution for super-resolution tasks. Intermediate data from the CONV layers 

is stored in on-chip SRAM, functioning as a buffer for the CNN process.  
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Figure 9: VDSR Hardware Structure 

3.2 Multiplier Comparison in CNN application  

The adapted MAC finds application within a CNN task, particularly in VDSR, as described in 

this paper. Figure 9 delineates the experimental arrangement for VDSR. The host PC, running 

Windows Visual Studio, undertakes quantization of both input image and weight data before 

transmitting them to the FPGA. Communication between the host PC and FPGA is facilitated by 

the Xilinx Vivado SDK ver. 2017.03 tool. Subsequently, the host PC transmits the quantized 

image and weight data to the FPGA, where they are stored in DRAM for further processing. 

Upon the availability of all required data, the host triggers the initiation of CNN execution on the 

FPGA. VDSR employs 14 x 14 multiplications for its CNN operations. The input 14 bits 

comprise 1 signed bit, 3 integer bits, and 10 fraction bits. Initially, approximate compressors are 

applied to half of the partial products, which are represented as 14 bits. Subsequent experiments 

involve variations in multipliers, compressors, and the number of applied bits. Specifically, an 

approximate compressor is applied to 10 out of 28 bits, representing half of the fraction bits.  
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Figure 10: Synthesis results 

 

Figure 11: area report  

 

Figure 12: power report  
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Figure 13: Delay report  

Table I: Synthesized in FPGA & Cadence Results 

Type of 

synthesis 

Power Area Delay 

FPGA-4-2 

compressors  

4.23 (Watts) 24.4 (µm2) 16.81(ns) 

CADENCE-4-2 

compressors 

65379.739 (nw) 1991 (nm) 460(ps) 

 

Conclusion 

The application of two novel 4-2 compressors on a Booth multiplier demonstrates superior 

performance in optimized area and power for suitable applications. The comprehensive summary 

of experimental outcomes results is detailed in the accompanying table. Interestingly, BW 

multipliers better Booth multipliers in terms of area, delay, and power consumption. However, 

despite their advantages, super-resolution image results using BW multipliers fail to meet 

qualification standards. This shortfall can be attributed to the increased number of partial product 

groups in BW multipliers, necessitating additional compressors to streamline circuitry and 

achieve satisfactory outcomes. 
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