

403

Vol. 21, No. 1, (2024)

ISSN: 1005-093

Design of a optimized and High Performance MAC for CNNs

1 Manjula B Bhajantri, 2 Dr.Sharanabasaveshwar G Hiremath

1 Research Scholar, Department of Electronics and Communication Engineering, East West Institute of

Technology, Bangalore, Visvesvaraya Technological University, Belagavi, Karnataka.
2 Professor, Electronics and Communication Engineering, East West Institute of Technology, Bangalore,

Visvesvaraya Technological University, Belagavi, Karnataka.

Abstract

The latest Convolutional Neural Networks (CNNs) incorporate a greater number of convolution

layers compared to previous iterations, aiming to enhance classification accuracy and super-

resolution. While numerous researchers concentrate on minimizing network size to lower

computational costs while maintaining accuracy, others explore optimizing individual

convolution layers to reduce computational expenses. In this paper, we introduce a novel

approach to approximate computing utilizing 4-2 compressors, applied to both Baugh Wooley

and Booth multipliers. Convolution layers within CNNs typically employ multiply-and-

accumulate (MAC) operations. We have integrated approximate multipliers into the adapted

MAC structure to enhance the efficient utilization of Field Programmable Gate Array (FPGA)

resources. Our results demonstrate that the proposed approximate compressors exhibit a

reduction of 15.4% in the area-delay product (ADP) and 35.7% in the area-power product (APP)

compared to previous design methodologies.

Keyword: CNN, FPGA, MAC, Multiplier, Approximate Compressor

1. Introduction

Y. LeCun et al. introduced the Convolutional Neural Network (CNN) [1, 2], which has gained

increasing popularity due to its superiority in tasks such as image recognition, classification, and

speech recognition compared to other deep learning algorithms. CNN can be delineated into two

main components. Firstly, there is the training phase where, for instance, it learns the distinctive

features of each image within the database to facilitate image classification.

The subsequent phase involves classification. Here, CNN scrutinizes the features of a new input

image and endeavors to correlate them with the training data, thereby determining the nature of

the image. We will delve deeper into the intricacies of CNN in the subsequent section. Accurate

image classification holds paramount importance. To enhance recognition accuracy, CNN

necessitates additional convolution layers. For instance, AlexNet, depicted in Figure 1, which

encompasses five convolution layers, clinched the top prize at the 2012 ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) with a top-5 error rate of 15.3% [3]. Nonetheless,

DOI: https://doie.org/10.0618/Jbse.2024912129

404

Vol. 21, No. 1, (2024)

ISSN: 1005-093

ResNet, the victor of ILSVRC 2015, augmented the layer count to 152 and attained a Top-5 error

rate of 5.71% [4]. Table I delineates the Top-5 error rates from 2012 to 2015 at the ILSVRC,

showcasing a substantial reduction as the layer count escalates. This underscores the

indispensability of augmenting the convolution layers for heightened accuracy in CNN networks.

However, when CNNs are integrated into hardware systems such as CPUs, GPUs, and Field

Programmable Gate Arrays (FPGAs), the hardware expenses surge in direct correlation with the

layer count. The reason lies in the intensive computational demands of convolutional layers,

while fully connected (FC) layers require substantial memory resources [5]. To alleviate the

computational burden of CNNs, diverse methodologies have been explored. Y. Gal et al. [30]

proposed a Bayesian CNN approach tailored for small datasets, achieved by imposing a

probability distribution over the CNN's kernel. X. Lin et al. [15] investigated binary CNNs,

where weight and bias values are confined to {-1, +1} during runtime, resulting in a significant

reduction in memory usage and computational expenses.

Hardware accelerators encompass a variety of types of hardware, with Application-specific

Integrated Circuits (ASICs) and FPGAs emerging as the most prevalent choices. Employing

ASICs as hardware accelerators typically offers greater efficiency compared to FPGAs.

Nevertheless, FPGAs boast greater flexibility, accommodating a wider range of applications than

ASICs. Consequently, FPGA environments are gaining popularity owing to their superior

energy-to-performance efficiency [7, 8]. Furthermore, recent research indicates that the

performance of FPGA systems is comparable to that of CPUs and GPUs [9]. However, the

primary weakness of FPGA systems lies in their extremely limited resources. To perform

Multiply-Accumulate (MAC) operations, FPGA utilizes Digital Signal Processing (DSP) and

Look-Up Table (LUT) blocks. Typically, only DSPs are employed for multiplication operations

of dimensions × and b. As these operations are executed in parallel, the number of MAC

operations corresponds to the number of DSPs utilized in the FPGA. D. Nguyen et al. [29]

introduced the concept of double MAC, which effectively reduces the number of DSPs required

by half. Nonetheless, this approach proves beneficial only for scenarios involving small bit sizes,

such as 4 × 4 multiplications. Once the calculations surpass the capacity of a single DSP (e.g.,

exceeding 27 × 18 on the DSP48E2 within the Xilinx ZCU102 FPGA board), additional

resources become necessary. For instance, two DSPs or one DSP along with supplementary

LUTs are needed for computation. Z. Zhang et al. [30] suggested an alternative by amplifying

the number of MAC operations simultaneously. In cases where DSP resources prove insufficient

to accommodate all required multiplications within the network, LUTs are employed for the

remaining multiplications, albeit with less efficiency.

405

Vol. 21, No. 1, (2024)

ISSN: 1005-093

Figure 1: Off-Chip Hardware Accelerator Architecture

A multiplier comprises three key components: partial product generation, partial products

reduction, and final addition through carry-propagate adders. Approximation techniques can be

integrated into any of these stages. For instance, in [16], approximation methods are applied

during the partial product generation phase. Another approach, known as partial product

perforation, which involves omitting the generation of certain partial products, is explored in

[17]. The efficacy of these techniques is assessed across different multiplier implementations,

with power consumption and error rates compared for analysis. Meanwhile, during the partial

products reduction phase, various types of adders, including half/full adders and 4-2

compressors, are employed. Much of the prior research on approximate multipliers has

concentrated on this particular stage. For instance, Esposito et al. [18] introduced an approximate

half adder by streamlining a 2-1 compressor (half-adder) with an OR gate. By achieving a mere

1/16 error probability, the full adder can be simplified using just one AND gate and two OR

gates. Additionally, 4-2 compressors are frequently utilized to further reduce the partial product

step compared to half/full adders. Another method for approximate multipliers is outlined in

[19], where large multiplications are partitioned into smaller blocks, such as 2 × 2 multiplier

blocks, and adjustable multipliers are constructed. Truncation methods have also garnered

significant attention. For instance, C. Chang et al. [20] employed a multiplexer-based truncated

array multiplier to diminish power consumption and area utilization. Achieving a balance

between accuracy and computational cost, encompassing power consumption and area

utilization, is crucial in implementing multipliers. Thus, it becomes imperative to ascertain the

optimal equilibrium between these factors. This paper introduces low-power and area-efficient

multipliers by proposing and employing novel approximate 4-2 compressors. Furthermore, the

conventional Multiply-Accumulate (MAC) operation is adapted to perform two operations

concurrently. The application of Convolutional Neural Networks (CNNs) in VDSR is utilized to

validate the efficacy of these MAC operations.

406

Vol. 21, No. 1, (2024)

ISSN: 1005-093

1.1 CNN Architecture

A CNN architecture comprises input and output layers, with hidden layers sandwiched in

between, as illustrated in Figure 2. These hidden layers play a pivotal role in CNNs as they

directly impact the accuracy of the model's outputs. Typically, the hidden layers consist of a

sequence of components including convolutional layers (CONV layers), activation functions

such as Rectified Linear Unit (ReLU), pooling layers, and fully connected (FC) layers.

Figure 2: A Regular n-layer Neural Network

CONV layers perform computations involving inputs, weights, and biases. These weights are

commonly referred to as kernels. Illustrated in Figure 3, when inputs traverse the kernel, they

undergo multiplication with the weights and subsequent accumulation with biases. This process

involves matrix multiplications, enabling parallel computation. The number of outputs generated

equals the number of kernels utilized in the operation.

Figure 3: Convolution Calculation

Activation functions are applied to the outputs of kernels. Rectified Linear Unit (ReLU) stands

out as a commonly employed activation function due to its ability to mitigate the likelihood of

gradient vanishing and its promotion of sparsity. ReLU functions by setting negative values to

zero while preserving positive values, as elucidated in (1).

h = max (0 , y), where y = wx + b (1)

407

Vol. 21, No. 1, (2024)

ISSN: 1005-093

Pooling is another pivotal concept in CNNs, characterized by its non-linear nature as it serves to

decrease the number of features. Among various pooling methods, max pooling is the most

prevalent. This operation entails extracting the maximum value from the values within a filter.

Figure 4 provides a visual depiction of how max pooling is conducted.

Figure 4: Max Pooling with a 2 × 2 filter and stride = 2

FC layers serve as the output layers in a CNN architecture. Following multiple CONV layers and

max pooling layers, FC layers establish connections between every neuron in one layer to every

neuron in another layer. The flattened matrix subsequently undergoes processing through an FC

layer for classification purposes.

1.2 CNN Hardware Architecture

Figure 5 provides an overview of the CNN hardware architecture. Due to the extensive volume

of data, weights are stored in external memory. The initial CONV layer receives input feature

map data and weights from this external memory, then performs MAC operations. The outcomes

are stored in a buffer, thereby minimizing data communication between the CNN hardware and

external memory. Consequently, this setup also contributes to a reduction in power consumption.

Figure 5: An Overview of CNN Hardware Architecture

CONV layers are recognized as computation-intensive layers, whereas FC layers are identified

as memory-intensive layers [14]. This distinction underscores our focus on reducing

computational costs primarily within CONV layers. Conversely, FC layers necessitate substantial

data retrieval from external memory, highlighting the significance of minimizing the number of

weights associated with them.

408

Vol. 21, No. 1, (2024)

ISSN: 1005-093

Figure 6: A Conventional MAC Structure

Figure 7 depicts a conventional MAC structure, serving as the computational engine for the

CONV layer. Two n-bit inputs are multiplied, resulting in a product of 2n bits. Here, input "a"

can be interpreted as input feature map data from the image, while input "b" represents a weight

value from the kernel. The multiplied results are subsequently accumulated with other results

from the same kernel, utilizing an adder. Upon completion of each operation within the MAC,

the results traverse through ReLU before proceeding to the pooling layer for downsizing, as

elaborated in the preceding section.

2. Proposed methodology of MAC for CNN

This study aims to offer a comprehensive review and comparative analysis of approximate 4-2

compressors previously proposed in literature. Additionally, we introduce a novel approximate

compressor, bringing the total number of analyzed compressors to twelve. These circuits are then

utilized in the design of 8 × 8 and 16 × 16 multipliers, implemented in CMOS technology. For

each operand size, we examine two multiplier configurations, featuring varying levels of

approximations, both signed and unsigned. Our investigation underscores the absence of a

singular optimal approximate compressor topology, as the most suitable solution hinges on

factors such as the required precision, the signedness of the multiplier, and the error metric under

consideration.

The proposed approximate 4-2 compressor leverages the stacking circuit concept, initially

introduced in [33] for designing hardware-efficient 6-3 and 7-3 exact compressors, and adapted

herein for approximate compressor implementation. With four inputs x1, x2, x3, x4, a 4-bit

stacker circuit produces four outputs y1, y2, y3, y4, where y1 is set high if any of the inputs is '1',

y2 is set high if any two inputs are '1', and so forth. The behavior of a four-bit stacker is

delineated by the following Boolean equations:

y1 = x1 + x2 + x3 + x4 ...(1)

409

Vol. 21, No. 1, (2024)

ISSN: 1005-093

y2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 ..(2)

y3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4.. (3)

y4 = x1x2x3x4 ...(4)

A. Partial Products Reduction

The Partial Product Matrix (PPM) is minimized through a methodology akin to the Dadda

multiplier, which employs multiple stages of compressors to diminish the maximum height of the

PPM to two rows. Determining the maximum height involves working backward from the final

stage. Utilizing 4-2 compressors yields heights of 2, 4, and 8.

Figure 7: Reduction scheme for an 8 × 8 unsigned multiplier with C − N configuration

Approximate 4-2 compressors exclusively operate within the 8 least significant columns of the

partial-product matrix. The Carry and Sum outputs of approximate 4-2 compressors are indicated

by dotted lines, while solid lines denote connections for full adders and outputs of exact 4-2

compressors. Half adder outputs are represented by solid lines with a vertical bar.

The reduction process employs heights of 16, 32, and so forth as the maximum thresholds for the

various stages. Full and half adders are exclusively utilized when necessary to achieve the

requisite reduction of the PPM. As illustrated in Figure 7, which serves as an example for an

unsigned 8 × 8 multiplier in a C-N configuration, the diagram showcases the reduction scheme.

In this depiction, the Carry and Sum outputs of the approximate 4-2 compressors are depicted

410

Vol. 21, No. 1, (2024)

ISSN: 1005-093

with dotted lines, while solid lines represent the outputs of exact 4-2 compressors and full

adders. Half adder outputs are linked by solid lines with vertical bars. The arrowed lines depicted

in Figure 4 illustrate the connections between the Tin-Tout pins of exact 4-2 compressors.

Noteworthy are the full-adders situated in column #12 of the first stage and column #14 of the

second stage, essential for receiving the Tout signal from the exact 4-2 compressor in the

preceding column. In the C-N configuration, the 8 × 8 multiplier utilizes 9 approximate 4-2

compressors and 8 exact compressors, whereas in the case of the 16 × 16 multiplier, the

quantities of approximate and exact compressors are 49 and 48, respectively. It is crucial to note

that the examined approximate compressors (excluding Yang1 and Lin) lack input symmetry, as

the error is contingent upon the specific order in which the input bits are connected to the x1, x2,

x3, and x4 inputsPut differently, the count value can vary when the inputs are permuted, even

with the same number of inputs set to '1'. Conversely, the inputs of exact compressors can be

rearranged without impacting system functionality. For instance, consider the Ha compressor: for

the input x4x3x2x1 = 1100, the count value is one, whereas for the input x4x3x2x1 = 0011, the

count value becomes two. Consequently, the error performance of a partial products reduction

tree hinges on the specific connection of each signal to every input of the approximate

compressors. In order to mitigate the error rate, it is essential to take into account the

probabilities associated with the signals driving the inputs of the approximate compressors

during the design phase of the partial product compression tree. This aspect has been overlooked

in prior literature, rendering the design of the partial product reduction tree a challenging task.

Additionally, without precise knowledge of the exact order of connections utilized in previous

studies, it becomes challenging to reproduce (and subsequently compare) the results presented in

prior research.

3. Results and discussions

A Modified MAC

The conventional Multiply-Accumulate (MAC) structure depicted in Figure 8 processes one

input data with one weight. To address the challenge of reducing the DSP usage in FPGA, a

double MAC approach was proposed by [29]. However, the applicability of the double MAC

method is limited to calculations involving small bit sizes. When the number of bits in the

multiplication operation exceeds the DSP48E2 specification, requiring 27 × 18, two DSPs or one

DSP with additional LUTs become necessary. Therefore, this paper proposes a modified version

of the double MAC method aimed at optimizing FPGA resource utilization.

411

Vol. 21, No. 1, (2024)

ISSN: 1005-093

Figure 8: (a) Four 2 × 2 Kernel Convolution (b) A Modified MAC Structure.

Figure 8 presents a modified MAC structure. Figure 15(a) illustrates an example of a four 2 × 2

kernel convolution with a stride of 1. In the conventional MAC setup, DSPs are exclusively

utilized for computing one kernel operation. Consequently, a total of 4 DSPs are necessary to

process the four 2 x 2 kernel CONV layer. However, for deeper convolutions employed in high-

accuracy classification or recognition tasks, the available DSP resources in FPGA may prove

inadequate to handle all MAC operations within the CONV layers. In such cases, the FPGA tool

automatically converts the remaining MAC operations to LUTs during synthesis, albeit this

automatic conversion from DSPs to LUTs by the tool is not an efficient approach. Nonetheless,

multipliers, such as Booth and Baugh Wooley multipliers, are well-known for their optimization

in terms of area, power consumption, and delay. Furthermore, these multipliers can undergo

further optimization through the utilization of approximate compressors. This paper explores the

application of approximate compressor designs on Booth and Baugh Wooley multipliers,

integrated within a modified MAC setup, aiming for high performance and efficient resource

utilization in FPGA environments.

3.1 VDSR Hardware Structure

CNN finds applications in various domains. This paper implements the modified MAC on

VDSR, as depicted in Figure 16. A 256 pixel × 256 pixel input image from the host PC

undergoes processing through 12 CONV layers on the FPGA board. With input data comprising

14 bits, the previous multipliers are extended accordingly. Furthermore, in line with common

CNN practices, the outputs from MAC operations are truncated to 14 bits. Both input image and

weight data are stored in the DRAM within the FPGA. The ARM CPU embedded within the

FPGA board receives commands from the host PC, facilitating tasks such as data transfer and

CNN execution on the FPGA. Upon receiving the 'Run' command from the host, the FPGA

initiates the CNN execution for super-resolution tasks. Intermediate data from the CONV layers

is stored in on-chip SRAM, functioning as a buffer for the CNN process.

412

Vol. 21, No. 1, (2024)

ISSN: 1005-093

Figure 9: VDSR Hardware Structure

3.2 Multiplier Comparison in CNN application

The adapted MAC finds application within a CNN task, particularly in VDSR, as described in

this paper. Figure 9 delineates the experimental arrangement for VDSR. The host PC, running

Windows Visual Studio, undertakes quantization of both input image and weight data before

transmitting them to the FPGA. Communication between the host PC and FPGA is facilitated by

the Xilinx Vivado SDK ver. 2017.03 tool. Subsequently, the host PC transmits the quantized

image and weight data to the FPGA, where they are stored in DRAM for further processing.

Upon the availability of all required data, the host triggers the initiation of CNN execution on the

FPGA. VDSR employs 14 x 14 multiplications for its CNN operations. The input 14 bits

comprise 1 signed bit, 3 integer bits, and 10 fraction bits. Initially, approximate compressors are

applied to half of the partial products, which are represented as 14 bits. Subsequent experiments

involve variations in multipliers, compressors, and the number of applied bits. Specifically, an

approximate compressor is applied to 10 out of 28 bits, representing half of the fraction bits.

413

Vol. 21, No. 1, (2024)

ISSN: 1005-093

Figure 10: Synthesis results

Figure 11: area report

Figure 12: power report

414

Vol. 21, No. 1, (2024)

ISSN: 1005-093

Figure 13: Delay report

Table I: Synthesized in FPGA & Cadence Results

Type of

synthesis

Power Area Delay

FPGA-4-2

compressors

4.23 (Watts) 24.4 (µm2) 16.81(ns)

CADENCE-4-2

compressors

65379.739 (nw) 1991 (nm) 460(ps)

Conclusion

The application of two novel 4-2 compressors on a Booth multiplier demonstrates superior

performance in optimized area and power for suitable applications. The comprehensive summary

of experimental outcomes results is detailed in the accompanying table. Interestingly, BW

multipliers better Booth multipliers in terms of area, delay, and power consumption. However,

despite their advantages, super-resolution image results using BW multipliers fail to meet

qualification standards. This shortfall can be attributed to the increased number of partial product

groups in BW multipliers, necessitating additional compressors to streamline circuitry and

achieve satisfactory outcomes.

References

1) Y. LeCun et al., "Backpropagation Applied to Handwritten Zip Code Recognition," in

Neural Computation, vol. 1, no. 4, pp. 541-551, Dec. 1989.

2) Yann LeCun and Yoshua Bengio. 1998. Convolutional networks for images, speech, and

time series. In The handbook of brain theory and neural networks, Michael A. Arbib (Ed.).

MIT Press, Cambridge, MA, USA 255-258.

415

Vol. 21, No. 1, (2024)

ISSN: 1005-093

3) A. Krizhevsky, I. Sutskever, G. E. Hinton, “ Imagenet classification with deep

convolutional neural networks, ” Advances in Neural Information Processing Systems, vol. 2,

pp. 1097-1105, 2012.

4) K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,

2016.

5) J. Qiu et al., “Going deeper with embedded fpga platform for convolutional neural

network,” in FPGA. ACM, 2016, pp. 26– 35.

6) Kestur, Srinidhi & Davis, John & Williams, Oliver. (2010). BLAS comparison on FPGA, CPU

and GPU. Proceedings - IEEE Annual Symposium on VLSI, ISVLSI 2010. 1. 288-293.

7) E. Nurvitadhi, J. Sim, D. Sheffield, et. al., “ Accelerating recurrent neural networks in

analytics servers: Comparison of FPGA, CPU, GPU, and ASIC,” Field Programmable

Logic and Applications (FPL), 2016.

8) S. Che, J. Li, J. W. Sheaffer, K. Skadron and J. Lach, "Accelerating Compute-Intensive

Applications with GPUs and FPGAs," 2008 Symposium on Application Specific

Processors, Anaheim, CA, 2008, pp. 101-107.

9) E. Nurvitadhi, G. Venkatesh, J. Sim, et. al., “Can FPGAs Beat GPUs in Accelerating

Next-Generation Deep Neural Networks?” International Symposium on Field-Programmable

Gate Arrays (ISFPGA), 2017.

