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Optimised Disease Detection in Avocado Crop using Deep 

Learning Employing Vision Transformer 

 

Abstract  
Fruit diseases have a major impact on both the quantity and quality of fruit produced. 

Because of its high nutritional content, one of the world's most significant food sources is 

avocado fruit. Avocado fruit diseases reduce crop yield and result in financial losses for 

growers. Diseases like scab, stem end rot, rat bite, seed moth, sun bloch, phytophthora, 

anthracnose, and cercospora spot can affect fruit. Thus, it is crucial to identify illnesses early 

in order to take preventative action and stop the spread of disease. Our new deep learning-

based approach is presented in this paper for classifying avocado fruit diseases. To enhance 

the performance of the model, this paper starts with preprocessing the data using 

normalisation techniques. After that, it uses ResNet-50 for feature extraction, taking 

advantage of its deep architecture to identify complex patterns in pictures of avocado fruits. 

We use a vision transformer for classification, making use of its attention mechanism to 

reliably identify patterns of disease and classify images. It effectively tunes hyperparameters 

using Cat and Mouse-Based Optimisation (CMBO) to maximise model performance. The 

suggested model outperforms current models with a 99.98% classification accuracy, 

achieving impressive results. The goal of this research is to improve orchard management 

techniques and enable prompt intervention by developing reliable and accurate automated 

tools for detecting avocado fruit disease. 

Keywords: Avocado Disease, Residual Network, Vision transformer, Cat and Mouse-Based 

optimization, Normalization. 

1. Introduction  
A crucial role for agriculture is played in cultivation and harvesting. Fruit quantity 

and quality are significantly impacted by plant and fruit diseases [1]. Uneven climatic 

conditions are having an impact on fruits, resulting in lower agricultural yield. This has an 

effect on the global agriculture economy. Furthermore, if the fruits have any kind of disease, 

the situation will only get worse. Here is where the goal of current agricultural structures and 

strategies is to recognise these diseases and keep the fruits from being impacted by them [2]. 

One of the most sought-after dietary sources in the world is avocado fruit. The loss of 

production yield and quality resulting from diseases and agroclimatic conditions is 

approximately 20% [3]. The avocado, or Persea Americana, is an important fruit that is 

indigenous to Mexico and Central America and grows practically everywhere in the world's 
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tropical as well as subtropical zones. Avocado fruits are extremely nutrient-dense, with high 

concentrations of vitamins, minerals, proteins, fibre, and unsaturated fatty acids all of which 

are beneficial to health [4]. The avocado fruit is highly prized for its role in the health and 

cosmetics industries as well as its high nutritional content. Early detection of fruit diseases is 

essential because they have an impact on the farming sector. The most common diseases that 

affect avocado fruit are Fruits and leaves of trees are affected by anthracnose (caused by 

Colletotrichum gloeosporioides), phytophthora (caused by phytophthora cinnamomi), and 

stem-end rot (caused by Dipladia sp.). Avocado tree tissues are susceptible to the common 

and annoying fungus known as "cercospora spot" [5]. Early disease detection enables control 

of the illness through the implementation of certain preventative measures [6]. Deep learning 

models have gained popularity recently for automatically identifying plant diseases [7]. 

Hailed as the "green gold," avocado has become a profitable commodity on the 

international market because of its rich nutritional content and plethora of culinary uses [8]. 

However, a number of diseases that impact fruit quality, yield, and overall plant health pose 

serious threats to its cultivation [9]. Among these are the well-known illnesses avocado 

sunblotch (caused by Avocado Sunblotch Viroid; ASBVd) and anthracnose (caused by 

Colletotrichum species). In addition to causing growers to suffer significant financial losses, 

these illnesses jeopardise the supply of premium avocados to consumers across the globe 

[10]. Due to a number of factors, identifying avocado fruit diseases is a difficult task for both 

researchers and growers. First of all, diseases frequently have subtle symptoms, making early 

detection and treatment challenging. Furthermore, the labor-intensive, time-consuming, and 

subjective nature of traditional disease identification techniques like visual inspection and 

manual sampling results in inconsistent diagnosis [11]. Furthermore, the various 

environmental circumstances that avocados are grown in make it more difficult to identify 

diseases because symptoms can differ based on soil type, climate, and cultural customs. 

Therefore, in order to enable prompt management strategies, there is an urgent need for 

sophisticated, automated systems that can accurately and efficiently classify avocado fruit 

diseases [12]. 

"Deep learning," a subset of artificial intelligence, is motivated by the structure and 

operations of the human brain, which has become a potent instrument for agricultural disease 

diagnosis and treatment [13]. Deep learning models have shown impressive abilities in image 

recognition and classification tasks by using intricate neural networks to learn complex 

patterns and features from large datasets. Deep learning has enormous potential to completely 

change how diseases are found and tracked in orchards when it comes to classifying avocado 

fruit diseases [14]. Deep learning algorithms can accurately identify subtle disease symptoms 

from high-resolution images of avocado fruits, allowing for early intervention and reducing 

yield losses. Furthermore, deep learning systems' adaptability and scalability make them ideal 

for implementation in a variety of agricultural contexts, providing a long-term remedy to the 

problems caused by avocado diseases [15]. 

1.1. Motivation 

The classification of avocado fruit diseases is driven by the urgent need to protect avocado 

farming, a sector of the economy that is heavily threatened by a number of diseases. Due to 

its high nutritional content and wide range of culinary applications, avocados have become 

more and more popular worldwide, leading to a rise in their cultivation. Diseases like 

anthracnose, sunblotch, and other fungal infections, however, pose a serious threat to this 
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growth because they not only reduce fruit quality and yield but also result in large financial 

losses for growers. In order to properly manage these illnesses, it is imperative that they are 

quickly and accurately identified lessen their negative effects on avocado production. The 

labor-intensive, subjective, and error-prone nature of traditional disease diagnosis techniques 

emphasises the need for sophisticated, automated systems. Through the application of deep 

learning techniques, scientists hope to create reliable models that can recognise and 

categorise diseases affecting avocado fruit from photos, allowing for early intervention and 

better orchard management practices in general. The ultimate goal is to maintain the 

resilience and sustainability of the avocado industry in order to meet the increasing demand 

for this highly valued fruit on a global scale, minimise losses, and maximise yields for 

growers. 

1.2. Main Contributions 

1. Advanced Preprocessing Techniques: Implementing data normalization for 

preprocessing to enhance the quality of input data. 

2. Effective Feature Extraction with ResNet-50: Utilizing ResNet-50, a deep 

convolutional neural network, for feature extraction, enabling the capture of intricate 

patterns and features from avocado fruit images. 

3. Innovative Classification Approach with Vision Transformer: Introducing a novel 

classification approach using a vision transformer, leveraging its attention mechanism 

to effectively discern disease patterns and classify avocado fruit images accurately. 

4. Efficient Hyperparameter Optimization with CMBO: Employing Cat and Mouse-

Based Optimization (CMBO) to tune hyperparameters effectively, enhancing model 

performance and ensuring optimal results. 

1.3. Organization of the Paper 

This is the format for the rest of the essay. The second section will include some 

highlighted pertinent literature. The suggested method is explained in Section 3. Explanation 

of the experiments and outcomes is given in Section 4. Section 5 summarises the findings and 

offers some conclusions 

2. Related works  
In the research by Campos-Ferreira, U.E., et al. [16], Anthracnose [Colletotrichum 

spp.], scab [Sphaceloma perseae], and healthy fruit were the three target classes that the three 

learning classifiers support vector machine (SVM), random forest (RF), and multilayer 

perceptron (MLP) were tested to identify from digital fruit images. The RF classifier was 

used to compare two colour descriptor extraction methods: region selection and image 

subsampling. The results showed an overall classification accuracy (ACC) of 84±0.08% with 

subsampling and 98±0.03% with region selection. The colour descriptors that were extracted 

using region selection were then used to evaluate the classifiers. SVM was inferior to RF and 

MLP, with an ACC of 98±0.03%. Anthracnose and scab were distinguished with an F1 score 

of 98%. 

The study by Matsui. T et al. [17] sought to determine how well a deep learning-based 

semantic segmentation detection model would identify Hass avocados can develop two types 

of fruit rot: stem-end and body rot. Consequently, 5-fold cross-validation was used to train 
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and validate U-net+ + in order to determine if every pixel in an X-ray picture is infected or 

not. Each X-ray image was then binary classified with an accuracy of 0.98 according to 

whether internal fruit rots were present or absent. Furthermore, a 3.15 percent RMSE was 

used to quantify the percentage of infected area. The suggested method identified rot along 

low-contrast fruit edges in addition to stem-end and body rot. The findings of this study 

suggest that decay inside the Hass avocado fruit could be successfully detected by the 

recommended automated inspection system using X-ray image analysis and deep learning. 

In the study by Gulzar, Y. [18], For the experiments, a dataset comprising 26,149 

photos of 40 distinct various fruit varieties were used. The test and training sets were divided 

into 3:1 ratios and randomly recreated. The experiment involved the introduction of a five-

layer customised head into the MobileNetV2 architecture. The customised head was used to 

replace Layer of Classification in MobileNetV2 Model, resulting in the creation of the TL-

MobileNetV2 modified version of MobileNetV2. Furthermore, the pre-trained model was 

retained through the use of transfer learning. TL-MobileNetV2 outperformed MobileNetV2 

by 3% with an accuracy of 99%, and TL-MobileNetV2 had an identical 1% error rate. The 

accuracy was 8, 11, 6, and 10% higher than that of AlexNet, VGG16, InceptionV3, and 

ResNet, respectively. In addition, the TL-MobileNetV2 model achieved 99% F1-score, 99% 

recall, and 99% precision. 

Pawar, S.E., et al. [19] suggested a method for classifying and detecting fruit diseases 

that combines deep learning and hybrid machine learning. On heterogeneous fruit datasets, a 

variety of feature extraction and selection strategies were used, along with machine learning 

and deep learning classification algorithms. The suggested hybrid CNN obtained the best 

accuracy of 97.10% across all fruit image datasets in a thorough experimental analysis. 

The object of the study by Guo, X., et al. [20] was to create a hyperspectral imaging 

(HSI) method for estimating internal chilling injury in avocados. Hyperspectral cameras 

covering the 400 nm to 1000 nm wavelength range were used to take 2 nm resolution images 

of the avocado surface. Using estimated functions of multiple instances (eFUMI) and 

hyperspectral unmixing techniques, the spectra that correlated with internal injured areas 

were identified. Measuring the firmness of the fruit and the extent of injuries revealed a 

correlation between the external and internal alterations detected by HSI, indicating that HSI 

may be utilised to track avocado internal disorders. 

The research by Wijaya, Y.F., et al. [21] concentrated on filling the void by utilising 

the created Convolutional Neural Network architecture on a large and varied dataset 

consisting of 67,692 image files divided into 131 fruit classes. With training accuracy 

reaching 98.39% and validation accuracy at 90%, the training process demonstrated a 

significant improvement in accuracy. Training loss also decreased to 0.0430 and validation 

loss to 0.2991. With a shallow loss of 0.0251 in the 59th epoch, the training accuracy reached 

its peak in the advanced stage of training at 99.43%. 

The work by Zala, S., et al. [22] altered utilising techniques based on deep learning, 

particularly the use of a Vision Transformer and a customised Convolutional Neural Network 

(CNN). Twelve different fruit classes six categories of healthy fruits and six categories of 

unhealthy fruits made up the dataset used in this study. For training and testing, a total of 

12,000 data points from 12 distinct classes were utilised. To improve the models' 

performance, a great deal of preprocessing was done along with data augmentation 
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techniques. These actions were taken to make sure the models could accurately represent and 

distinguish between the distinctive qualities and traits of different fruits. Numerous 

systematic research trials were carried out, entails modifying various parameters to maximise 

the performance of the models. The models were adjusted through this iterative process to 

obtain the maximum average classification accuracy. Remarkably, the vision transformer 

method proved to be the most effective, achieving an exceptional 98.05% average accuracy. 

2.1. Research Gaps 

Though deep learning techniques have made great strides in the classification of 

avocado fruit diseases, there are still a number of unanswered questions. First off, while 

previous research has concentrated on particular illnesses like scab and anthracnose, 

comprehensive models that can identify a wider variety of avocado diseases, including 

emerging pathogens, are required. Furthermore, most studies have focused on visible light 

images rather than exploring the possibilities of other imaging modalities like hyperspectral 

and X-ray imaging for disease detection. By incorporating these modalities into deep learning 

frameworks, the range of applications could be increased and disease detection accuracy 

could be improved. The difficulties of real-world deployment, such as environmental 

variability and scalability to large-scale agricultural operations, are also not well studied. 

Closing these gaps will help develop reliable, useful methods for automated management and 

detection of avocado fruit diseases. 

3. Proposed Methodology 
Figure 1 shows the proposed work flow of the Avocado fruit disease detection model using 

Vision Transformer. 

 

Figure 1: Block Diagram 

3.1 Image Dataset 

  Images of avocado fruit diseases captured in real time are gathered from reliable web 

sources as shown in figure 2 [23]. The resulting dataset is small in comparison to what needs 
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in order to achieve higher accuracy a large number of images. To increase the size of the 

dataset, image augmentation techniques like flipping, rotating, and resizing are applied, along 

with colour augmentation techniques like brightness and contrast. Nine thousand photos of 

avocado fruits from eight different classes are included in the dataset as shown in table 1. 

Eighty percent of the total data is used for testing, and the remaining twenty percent is used to 

train the model. This divides the datasets into training and testing portions. The testing and 

training images' 224 x 224 pixel resizing complies with the dimensional requirement of the 

model. Table 2 displays how many photos were used to train and test the suggested model.  

 

Figure 2: Examples of avocado fruit illnesses in pictures 

Table.1 Specifics of the classes of diseases affecting avocado fruit 

Disease Classes Number of images 

Cercospora 845 

Rat Bite 616 

Stem End rot 344 

Scab 1780 

Phytophthora 3088 

Seed Moth 231 

Sun bloch 2082 

Anthracnose 3000 

 

Table.2 Pictures used in testing and training 

Disease Classes Number of Training 

images 

Number of Testing images 

Seed Moth 185 46 

Sun bloch 1666 416 

Anthracnose 2400 60 

Rat Bite 493 123 
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Cercospora 676 169 

Stem End rot 275 69 

Phytophthora 2470 618 

Scab 1424 356 

 

3.2. Data Normalization 

During model training, an extensive range of eigenvalues will lead to instability because the 

Vision transformer model is extremely sensitive to the range of input features. The dataset is 

normalised to quicken the rate of convergence and enable it to detect minute differences 

between images. Equation (1) normalises the data for each image channel [24]. 

𝑍𝑖 =
𝑥𝑖−𝑥‾

𝛿𝑥
      (1) 

where 𝑥𝑖 , 𝛿𝑥 and 𝑥‾ are the mean, standard deviation, and consist of the standard deviation, 

mean, and  sample values for the channel, respectively. After normalising the data to zero 

mean, all image pixels with values fall into a range of [-1,1], which is found by deducting the 

mean from the channel pixel values and dividing the result by their standard deviation[26]. 

3.3. ResNet50 Feature Extraction 

Kaimimg He unveiled Resnet-50, a CNN variant, in 2015 [25]. It has fifty layers total; the 

convolution layers make up 48 of the layers, the first layer is the maximum pooling layer, and 

the last layer is the average pooling layer. A collection of similar or "residual" blocks make 

up the ResNet model. A block functions similarly to a stack of convolutional layers. The 

block's output is connected to its own input via an identifying mapping path. It used a 

bottleneck block of three layers that used 3 × 3 convolutions to lower and re-establish the 

channel depth in order to lessen the computational load during the 3 × 3 convolution 

calculation. It have one layer, which is a 7𝑥7 kernel size with 64 distinct kernels. In the 

second convolution, 64 kernels with a 1 × 1 kernel size, 64 kernels with a 3 × 3 kernel size, 

and 64 kernels with a 1 × 1 kernel size result in nine layers. The third convolution yields 12 

layers when using 1 × 1 kernel size and 128 kernels, the fourth convolution uses 1 × 1 kernel 

size and 512 kernels, and the fifth convolution uses 3 × 3 kernel size and 128 kernels. The 

fourth convolution yields eighteen layers with 256 kernels for 1 × 1 kernel size, 256 kernels 

for 3 × 3 kernel size, and 1024 kernels for 1 × 1 kernel size. Five and six convolutions yield 

nine and one layer, accordingly, so there are a total of fifty layers. As a result, a new, more 

compact image data matrix is created and distributed throughout the network. 

3.4. Vision Transformer Classification 

Due in large part to their attention mechanisms, Transformers have demonstrated 

impressive performance in tasks involving natural language processing. Expanding on this 

idea, the Vision Transformer (ViT) has become a potent image classification architecture. 

Three essential components make up the ViT architecture [26]. 

• Patch Embedding 

The fruit pictures 𝐱 ∈ ℝ𝐻×𝑊×𝐶 is separated into patches of a fixed size and then flattened 2D 

patches are sequentially represented as 𝐱𝑝 ∈ ℝ𝑁×(𝑃2⋅𝐶), where H stands for the height of the 
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image, W for the width, C for the total amount of channels, and (𝑃, 𝑃) indicates each image 

patch's resolution. It is possible to calculate the amount of patches N as 

𝑁 =
𝐻 × 𝑊

𝑃2
(2) 

The patches are given a linear projection before being fed into the Transformer in sequence. 

In this linear projection, an embedding matrix E is multiplied by the patches to map them to a 

D-dimensional vector space. A patch embedding is what this linear projection's result is 

known as. The model can determine the positional information of the image thanks to 

positional embeddings 𝐄pos  to the patch embeddings as an appendix. Furthermore, a 

learnable class token is concatenated with the embedded image patches 𝐱class,  which is 

necessary for the process of classification. The first embedding of the patch 𝐳0, comprising 

the class token and the embedded series of image patches, is calculated as follows: 

𝐳0 = [𝐱class ; 𝐱𝑝
1𝐄; 𝐱𝑝

2𝐄;⋯ ; 𝐱𝑝
𝑁𝐄] + 𝐄𝑝𝑜𝑠,  𝐄 ∈ ℝ(𝑃2⋅𝐶)×𝐷, 𝐄𝑝𝑜𝑠 ∈ ℝ(𝑁+1)×𝐷 (3) 

Here, 𝐱𝑝
𝑛 denotes the image patch with n values between 1 and N. The Transformer encoder 

receives the embedded image patches that result. 

• Transformer Encoder 

Two layers of feed-forward multi-layer perceptrons (MLPs) with full connectivity and multi-

head self-attention (MSA) layers make up each of the L identical encoder blocks that make 

up the Transformer encoder. The sequence of input from the preceding layer is received by 

each encoder block's l-th layer 𝐳ℓ−1. The input 𝐳ℓ−1 receives layer normalisation, which 

enhances training speed and performance by normalising throughout the feature dimension, 

the input values. After that, the layer normalisation output is sent to the MSA layer. 

After that, the MSA layer's output is once more layer-normalized. Ultimately, the MLP layer 

receives the outcomes of the layer normalisation. The encoder block uses residual 

connections, sometimes referred to as skip connections, to help information move between 

non-adjacent layers. The problem of vanishing gradients is resolved by these connections, 

which enable gradients to move throughout the network unaffected by non-linear activation 

functions. In the l-th encoder layer, the gradient flow is described as 

𝐳ℓ
′ = MSA (LN (𝐳ℓ−1)) + 𝐳ℓ−1,  ℓ = 1,… , 𝐿 (4)

𝐳ℓ = MLP (LN (𝐳ℓ
′)) + 𝐳ℓ

′ ,  ℓ = 1, … , 𝐿 (5)
 

where layer normalisation is represented by LN. 

The MSA consists of a final linear layer, a concatenation layer, a linear layer, and a self-

attention layer. The number of heads k determines how many self-attention operations are 

carried out in parallel in the MSA. Three weight matrices are multiplied by the patch 

embedding in D dimensions z in each head 𝐔𝑞 , 𝐔𝑘, and 𝐔𝑣 to acquire the query (𝐪), 𝑘𝑒𝑦(𝐤), 

and value (v) matrices. Each head's multiplication process is described as 

[𝐪, 𝐤, 𝐯] = [𝐳𝐔𝑞 , 𝐳𝐔𝑘, 𝐳𝐔𝑣],  𝐔𝑞 , 𝐔𝑘, 𝐔𝑣 ∈ ℝ𝐷×𝐷ℎ (6) 

The weighted sum of all values V is found following the projection, which is initiated after 

the matrices q, k, and v are obtained and divided into k subspaces. Based on the (i, j) dot 

product of each pair of elements, attention weights in each head are calculated their 

relationship as 𝐪𝑖 and 𝐤𝑗. The sequence's significance for each patch is indicated by the dot 
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product that results. Determine the weights based on the values by computing q + k as a dot 

product and using the softmax function, as shown below: 

𝐴 = softmax (
𝐪𝐤⊤

√𝐷ℎ

) ,  𝐴 ∈ ℝ𝑁×𝑁 (7) 

where 𝐷ℎ =
𝐷

𝑘
. 

The dot product that is produced afterwards shows how significant each patch is in the order. 

Ascertain the weights on the values by computing q + k as the dot product and applying the 

softmax function, as indicated below 𝐔𝑚𝑠𝑎, resulting in 

MSA (𝐳) = [SA1(𝑧); SA2(𝑧);⋯ ; SA𝑘(𝑧)]𝐔𝑚𝑠𝑎,  𝐔𝑚𝑠𝑎 ∈ ℝ𝑘⋅𝐷ℎ×𝐷 (8) 

Since each head of the MSA gathers data from various angles and locations, the model can 

encode complex features concurrently. 

• Classification 

The Gaussian error linear unit (GeLU) serves as the basis for the activation function of the 

two fully connected layers of the multi-layer perceptron (MLP), classifies the ViT model. 

The inputs are given a weight by the GeLU activation function based more on their values 

than their indicators. In contrast to the ReLU function, the GeLU function has a larger degree 

of curvature and can result in both favourable and unfavourable outcomes. When compared 

to the ReLU function, this characteristic enables the GeLU function for more accurate 

complex function approximation. 

The final layer of the encoder chooses the sequence's first token, 𝑧𝐿
0, and uses layer 

normalisation to create the image representation r. For classification, the resultant r is then 

run through a tiny MLP head with a sigmoid function and one hidden layer. This is how to 

get the sequence's image representation: 

𝐫 = LN (𝐳𝐿
0) (9) 

3.5. Hyper parameter tuning using CMBO  

The mathematical model for the Cat and Mouse-Based Optimisation Algorithm (CMBO) is 

presented in this section along with an explanation of its theory for use in tuning hyper 

parameters [27]. 

 

The population-based algorithm known as the CMBO was inspired by the way a cat would 

naturally attack a mouse and then flee to a safe haven. Two packs of mice and cats are the 

search agents in the suggested algorithm, and they move randomly throughout the problem 

search space. The proposed algorithm updates the population members in two stages. The 

first phase models how cats approach mice, and the second phase models how mice flee to 

safe havens in order to escape and survive. 

Every person in the population is, mathematically speaking, a suggested solution to the issue. 

As a matter of fact, A member of the population specifies values for the problem variables by 

using their location in the search space. Each individual in the population is therefore a 

vector, and the variables of the problem are determined by their values. Equation (10) uses a 

matrix known as the population matrix to determine the population of the algorithm. 
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𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁×𝑚

=

[
 
 
 
 
𝑥1,1 ⋯ 𝑥1,𝑑 ⋯ 𝑥1,𝑚

⋮ ⋱ ⋮ . ⋮
𝑥𝑖,1 ⋯ 𝑥𝑖,𝑑 ⋯ 𝑥𝑖,𝑚

⋮ . ⋮ ⋱ ⋮
𝑥𝑁,1 ⋯ 𝑥𝑁,𝑑 ⋯ 𝑥𝑁,𝑚]

 
 
 
 

𝑁×𝑚

(10) 

wherein X is the CMBO population matrix, X𝑖 is the 𝑖 th search agent, 𝑥𝑖,𝑑 is the value that the 

𝑖th search agent obtained for the 𝑑th problem variable, N is the amount of members in the 

population, and m is the amount of problem variables. 

As previously stated, the recommended values for the variables in question are decided by 

each individual in the population. As a result, the objective function has a value assigned to 

each member of the population. In Equation (11) a vector represents the values acquired for 

the objective function. 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

(11) 

wherein F is the vector of values for the objective function and 𝐹𝑖 represents the value of the 

ith search agent's objective function. 

Based on values found for the objective functions, the population members are ranked from 

best to worst, with the lowest objective function value and the highest objective function 

value. The sorted population matrix and the sorted objective function are found using 

equations (12) and (13). 

𝑋𝑆 =

[
 
 
 
 
𝑋1

𝑆

⋮
𝑋𝑖

𝑆

⋮
𝑋𝑁

𝑆 ]
 
 
 
 

𝑁×𝑚

 =

[
 
 
 
 
 
𝑥1,1

𝑆 ⋯ 𝑥1,𝑑
𝑆 ⋯ 𝑥1,𝑚

𝑆

⋮ ⋱ ⋮ . ⋮
𝑥𝑖,1

𝑆 ⋯ 𝑥𝑖,𝑑
𝑆 ⋯ 𝑥𝑖,𝑚

𝑆

⋮ .⋅ ⋮ ⋱ ⋮
𝑥𝑁,1

𝑆 ⋯ 𝑥𝑁,𝑑
𝑆 ⋯ 𝑥𝑁,𝑚

𝑆
]
 
 
 
 
 

𝑁×𝑚

(12)

𝐹𝑆  = [
𝐹1

𝑆 min(𝐹)
⋮ ⋮

𝐹𝑁
𝑆 max(𝐹)

]

𝑁×1

(13)

 

where 𝑋𝑆 is the population matrix that has been sorted using the objective function value, 𝑋𝑖
𝑆 

is the 𝑖 th a component of the sorted population matrix, 𝑥𝑖,𝑑
𝑠  is the ith search agent's value for 

the dth problem variable in the sorted population matrix, and 𝐹𝑆 is an objective function's 

sorted vector. 

The two mouse and cat groups that comprise the population matrix are part of the proposed 

CMBO. The other half of the members, who gave lower values for the same objective 

function, make up the population of cats, according to the CMBO, which also defines the 

population of mice. Higher values for the goal function were supplied by the first half of the 

members. Equations (14) and (15) are used, respectively, to determine the populations of 

mice and cats based on this idea. 
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𝑀 =

[
 
 
 
 

𝑀1 = 𝑋1
𝑆

⋮
𝑀𝑖 = 𝑋𝑖

𝑆

⋮
𝑀𝑁𝑚

= 𝑋𝑁𝑚

𝑆
]
 
 
 
 

𝑁𝑚×𝑚

=

[
 
 
 
 

𝑥1,1
𝑠 ⋯ 𝑥1,𝑑

𝑠 ⋯ 𝑥1,𝑚
𝑠

⋮ ⋱ ⋮ . ⋮
𝑥𝑖,1

𝑠 ⋯ 𝑥𝑖,𝑑
𝑠 ⋯ 𝑥𝑖,𝑚

𝑠

⋮ .⋅ ⋮ ⋱ ⋮
𝑥𝑁𝑚,1

𝑠 ⋯ 𝑥𝑁𝑚,𝑑
𝑠 ⋯ 𝑥𝑁𝑚,𝑚

𝑠
]
 
 
 
 

𝑁𝑚×𝑚

(14) 

𝐶 =

[
 
 
 
 
 

𝐶1 = 𝑋𝑁𝑚+1
𝑆

⋮
𝐶𝑗 = 𝑋𝑁𝑚+𝑗

𝑆

⋮
𝐶𝑁𝑐

= 𝑋𝑁𝑚+𝑁𝑐

𝑆
]
 
 
 
 
 

𝑁𝑐×𝑚

=

[
 
 
 
 
 
𝑥𝑁𝑚+1,1

𝑠 ⋯ 𝑥𝑁𝑚+1,𝑑
𝑠 ⋯ 𝑥𝑁𝑚+1,𝑚

𝑠

⋮ ⋱ ⋮ ⋅ ⋮
𝑥𝑁𝑚+𝑗,1

𝑠 ⋯ 𝑥𝑁𝑚+𝑗,𝑑
𝑠 ⋯ 𝑥𝑁𝑚+𝑗,𝑚

𝑠

⋮ .⋅ ⋮ ⋱ ⋮
𝑥𝑁𝑚+𝑁𝑐,1

𝑠 ⋯ 𝑥𝑁𝑚+𝑁𝑐,𝑑
𝑠 ⋯ 𝑥𝑁𝑚+𝑁𝑐,𝑚

𝑠
]
 
 
 
 
 

𝑁𝑐×𝑚

(15) 

where 𝑀 is the mouse population matrix, 𝑁𝑚 is the quantity of mice, 𝑀𝑖 is the 𝑗 th mouse, 𝐶 

is the cat population matrix, 𝑁𝑐 is the quantity of felines, and 𝐶𝑗 is the cat that is 𝑖 th. 

In the initial stage, cats' behaviour towards mice and their natural behaviour are used to 

model how their positions change updating the search parameters. Equations (16) through 

(18) are used to mathematically model this stage of the proposed CMBO update. 

𝐶𝑗
new : 𝑐𝑗,𝑑

new = 𝑐𝑗,𝑑 + 𝑟 × (𝑚𝑘,𝑑 − 𝐼 × 𝑐𝑗,𝑑)𝑗 = 1:𝑁𝑐, 𝑑 = 1:𝑚, 𝑘 ∈ 1:𝑁𝑚 (16)

𝐼 = round (1 +  rand ) (17)

𝐶𝑗 = {
𝐶𝑗

new , ∣ 𝐹𝑗
𝑐, new < 𝐹𝑗

𝑐

𝐶𝑗 , ∣  else 
(18)

 

Here, 𝐶𝑗
new  is the J th cat's current status, 𝑐𝑗,𝑑

new  is the new value that the 𝑗-th cat found for the 

𝑑 −th problem variable, where r is a random number between 0 and 1, 𝑚𝑘,𝑑 is the 𝑘 th 

mouse's 𝑑 th dimension, 𝐹𝑗
𝑐, new 

 is the goal function value derived from the updated status of 

the 𝑗th cat. 

The suggested CMBO models' second section mice's escape to havens. According to CMBO, 

each mouse has a randomly assigned haven, and the mice seek shelter in these havens. The 

search space's havens' locations can be determined by patterning the locations of different 

algorithm members are generated at random. Equations (19)–(21) are used to mathematically 

model this phase of the mice's position updates. 

𝐻𝑖: ℎ𝑖,𝑑 = 𝑥𝑙,𝑑&𝑖 = 1:𝑁𝑚, 𝑑 = 1:𝑚, 𝑙 ∈ 1:𝑁   (19) 

𝑀𝑖
new :𝑚𝑖,𝑑

new = 𝑚𝑖,𝑑 + 𝑟 × (ℎ𝑖,𝑑 − 𝐼 × 𝑚𝑖,𝑑) × sign (𝐹𝑖
𝑚 − 𝐹𝑖

𝐻) 𝑖 = 1:𝑁𝑚, 𝑑 = 1:𝑚(20) 

𝑀𝑖 = {
𝑀𝑖

new , ∣ 𝐹𝑖
𝑚, new < 𝐹𝑖

𝑚

𝑀𝑖 , ∣  else 
     (21) 

Herein, 𝐻𝑖 is the haven for the 𝑖 th mouse and 𝐹𝑖
𝐻 is the value of its objective function. 𝑀𝑖

new  

is the mouse's current state, and 𝐹𝑖
𝑚,𝑛𝑒𝑤

 is the value of its objective function. 

The algorithm moves on to the next iteration once every member of the population has been 

updated. According to Equations (14)–(21), this iteration of the algorithm keeps running until 
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the specified stop condition is satisfied. An optimisation algorithm may terminate after a set 

number of iterations or by specifying an acceptable degree of error between the answers 

found in ensuing iterations. Furthermore, the algorithm may be stopped after a predetermined 

amount of time. The best yielded quasi-optimal solution is obtained by using the CMBO after 

the iterations are finished and the algorithm is fully applied to the optimisation problem. 

Algorithm 1 also presents flowcharts of the different phases of the suggested CMBO, each of 

which has pseudocode specifications. 

Algorithm 1 Pseudocode of CMBO 

𝑆𝑡𝑎𝑟𝑡 𝐶𝑀𝐵𝑂. 

𝐼𝑛𝑝𝑢𝑡 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛: 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑎𝑛𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠. 

𝑆𝑒𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡𝑠 (𝑁) 𝑎𝑛𝑑 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑇). 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑎𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑎𝑡 𝑟𝑎𝑛𝑑𝑜𝑚. 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

𝐹𝑜𝑟 𝑡 = 1: 𝑇 

𝑆𝑜𝑟𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (12) 𝑎𝑛𝑑 (13). 

𝑆𝑒𝑙𝑒𝑐𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑚𝑖𝑐𝑒 𝑀 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (14). 

𝑆𝑒𝑙𝑒𝑐𝑡 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑎𝑡𝑠 𝐶 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (15). 

𝑃ℎ𝑎𝑠𝑒 1: 𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑐𝑎𝑡𝑠. 

𝐹𝑜𝑟 𝑗 = 1:𝑁𝑐  

𝑈𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑗 𝑡ℎ 𝑐𝑎𝑡 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (16) − (18). 

𝐸𝑛𝑑 

𝑃ℎ𝑎𝑠𝑒 2: 𝑢𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑚𝑖𝑐𝑒. 

𝐹𝑜𝑟 𝑖 = 1:𝑁𝑚 

𝐶𝑟𝑒𝑎𝑡𝑒 ℎ𝑎𝑣𝑒𝑛 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖 𝑡ℎ 𝑚𝑜𝑢𝑠𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (19). 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑠𝑡𝑎𝑡𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑖 𝑡ℎ 𝑚𝑜𝑢𝑠𝑒 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (20) 𝑎𝑛𝑑 (21). 

𝑒𝑛𝑑 

𝑒𝑛𝑑 
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4. Results and Discussion 

4.1. Experimental Setup 

 Using Google Colab, the experiment is run on an Intel Core i5-8200 CPU running at 

2.60 GHz with 8GB of RAM and an AMD Radeon M430S graphics card. Python 

programming and deep learning frameworks like TensorFlow and Keras are used to develop 

the model.  

4.2. Performance Evaluation 

The proposed model's performance is displayed in an error-specific table called the 

confusion matrix or error matrix. For binary classification, it can be a 2x2 table; for multiway 

classification, it can be a table with additional dimensions. Our approach predicts whether a 

fruit is diseased or not by using a binary classifier. It has two rows and two columns with the 

following values in them. 

 

Normal- Absence of diseases; Abnormal- Presence of disease 

True positive (TP)- No of samples that were correctly classified as abnormal 

False positive (FP)- No of samples that were incorrectly classified as abnormal 

True Negative (TN)- No of samples that were correctly classified as normal 

False Negative (FN)- No of samples that were incorrectly classified as normal. 

Specificity: It is shown as the percentage of the real negative that was predicted to be 

negative. It is represented as 

 Specificity (SP) =
𝑇𝑁

𝑇𝑁+𝐹𝑃
     (22) 

Recall: It shows the percentage of real positives that are accurately identified. It can be 

ascertained by 

 Recall (RC) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
     (23) 

F-score: It is a gauge of the model's precision using the given dataset. It is comparable to 

what follows. 

𝐹 −  score (F1) = 2 ∗
 precision ∗ recall 

 precision + recall 
    (24) 

Precision: Its definition is the percentage of correctly predicted positives that turn out to be 

real positives. It is stated aa: 

 Precision (PR) =
TN

TN+FP
     (25) 

Accuracy: When comparing the quantity of observations that were accurately predicted to the 

total number of observations, the most institutional performance is measured. It describes the 

capacity to discern between typical and unusual situations. It is stated as: 

 Accuracy (ACC) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (26) 
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Type-I and type-II errors are represented by false positives and false negatives, respectively.  

 

4.3. Various types of diseases classification 

Table 3 illustrates the various types of avocado fruit disease classification achieved 

using the proposed Vision Transformer (ViT) model. The classification results showcase the 

model's efficacy in accurately identifying different diseases affecting avocado fruits. 

Table 3: Different types of Avocado fruit disease classification using proposed ViT model. 

Disease Classes ACC PR RC F1 SP 

Anthracnose 99.42 99.71 99.94 99.38 99.22 

Cercospora 99.16 99.36 98.89 99.96 99.75 

Phytophthora 99.84 98.98 99.78 99.91 99.53 

Rat Bite 99.25 98.81 99.42 99.88 99.44 

Scab 99.39 99.93 99.66 99.12 99.51 

Seed Moth 98.90 99.31 99.75 99.25 99.34 

Stem End rot 99.71 99.87 99.86 99.88 99.66 

Sun bloch 99.58 99.43 99.61 99.32 99.14 

Table 3 and figure 3 summarizes the suggested classification performance Vision 

Transformer (ViT) model across various types of avocado fruit diseases. The ViT model 

demonstrates high ACC in distinguishing between healthy fruits and those affected by 

different diseases, achieving an ACC of 99.42% for Anthracnose, 99.16% for Cercospora, 

99.84% for Phytophthora, 99.25% for Rat Bite, 99.39% for Scab, 98.90% for Seed Moth, 

99.71% for Stem End rot, and 99.58% for Sun bloch. PR values range from 98.81% to 

99.93%, demonstrating the model's capacity to identify positive instances with ACC. 

Similarly, RC values, representing the model's sensitivity, range from 98.89% to 99.94%, 

indicating its effectiveness in identifying true positives. The F1, which illustrates the model's 

overall performance in disease classification, ranges from 99.12% to 99.96% and balances 

PR and RC. Furthermore, SP values, which indicate how well the model can classify negative 

instances, range from 99.14% to 99.75%, further affirming the robustness of the ViT model in 

distinguishing between healthy and diseased avocado fruits across various disease classes. 

 

Figure 3: Graphical validation of  types of disease  
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4.4. Classification validation 

Table 4 presents the classification analysis conducted using a various existing models. 

The table provides a comparative overview of the ACC, PR, RC, and F1 metrics achieved by 

each model, facilitating a comprehensive evaluation of their effectiveness in avocado fruit 

disease classification. 

Table 4: Classification analysis using various existing models 

Models ACC (%) PR (%) RC (%) F1 (%) 

RNN 91.44 90.33 90.21 90.28 

AlexNet 81.55 80.45 79.86 79.78 

ResNet 97.62 96.52 96.44 96.15 

DenseNet 98.47 98.37 98.26 98.18 

Proposed ViT 

model 

99.98 99.39 99.29 99.27 

Table 4 and figure 4 presents a comparative analysis of classification performance 

using various existing models for avocado fruit disease detection. The Recurrent Neural 

Network (RNN) achieved an ACC of 91.44%, with PR, RC, and F1 scores of 90.33%, 

90.21%, and 90.28%, respectively. AlexNet exhibited an ACC of 81.55%, with PR, RC, and 

F1 scores of 80.45%, 79.86%, and 79.78%, respectively. ResNet demonstrated improved 

performance with an ACC of 97.62%, PR of 96.52%, RC of 96.44%, and F1 score of 96.15%. 

DenseNet further enhanced classification ACC to 98.47%, with PR, RC, and F1 scores of 

98.37%, 98.26%, and 98.18%, respectively. Notably, the proposed Vision Transformer (ViT) 

model outperformed all other models, achieving an impressive ACC of 99.98%, PR of 

99.39%, RC of 99.29%, and F1 score of 99.27%. These results underscore the superior 

performance of the ViT model in avocado fruit disease classification compared to 

conventional models like RNN, AlexNet, ResNet, and DenseNet. 

 

Figure 4: Graphical validation of Classification analysis 
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4.5. Training and testing validation 

Table 5 depicts the comprehensive ACC analysis of training and testing validation conducted 

as part of this study. 

Table 5: The ACC analysis of training and testing validation 

Models 60:40 70:30 80:20 

RNN 91.61 92.14 93.16 

AlexNet 91.53 92.25 93.48 

ResNet 92.34 93.58 94.34 

DenseNet 93.65 94.69 95.66 

Proposed ViT 

model 

96.89 97.88 99.98 

Table 5 and figure 5 illustrates the ACC analysis of training and testing validation for 

various models across different train-test split ratios. The Recurrent Neural Network (RNN) 

achieved accuracies of 91.61%, 92.14%, and 93.16% for the 60:40, 70:30, and 80:20 split 

ratios, respectively. Similarly, AlexNet demonstrated accuracies of 91.53%, 92.25%, and 

93.48% across the same split ratios. ResNet exhibited increasing accuracies of 92.34%, 

93.58%, and 94.34% as the train-test split ratio widened. DenseNet showed consistent 

improvement in ACC, achieving 93.65%, 94.69%, and 95.66% ACC across the three split 

ratios. Notably, the proposed Vision Transformer (ViT) model consistently outperformed 

other models, with accuracies of 96.89%, 97.88%, and an exceptional 99.98% for the 60:40, 

70:30, and 80:20 split ratios, respectively. These results highlight the superior performance 

and scalability of the ViT model across different training and testing data distributions 

compared to traditional models like RNN, AlexNet, ResNet, and DenseNet. 

 

Figure 5: Graphical validation of testing and training phase 

5. Conclusion 
The study concludes by presenting a thorough framework for classifying avocado 

fruit diseases using cutting-edge deep learning methods. Our suggested approach has proven 

to be effective in addressing the difficulties related to disease detection in avocado 
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cultivation, as evidenced by thorough testing and assessment. We have accomplished 

remarkable accuracy in disease classification by using sophisticated preprocessing techniques 

for data normalisation, utilising ResNet-50 for feature extraction, and utilising a vision 

transformer for classification. Moreover, the optimal performance of our model has been 

guaranteed by our application of Cat and Mouse-Based Optimisation (CMBO) for 

hyperparameter tuning. Our approach is robust and reliable, as evidenced by its superior 

classification accuracy of 99.98%, which surpasses current models and sets a new benchmark 

in the classification of avocado fruit diseases. The study has important ramifications for the 

sustainability and adaptability of the avocado sector in addition to advancing automated 

orchard management techniques. Further development and implementation of our suggested 

framework could transform disease control tactics in the future, increasing avocado yield and 

guaranteeing food security for people throughout the world. 
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