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Abstract 

The system performance of wireless networks heavily relies on channel estimation. Moreover, 

the application of deep learning has shown substantial advancements in improving 

communication reliability and decreasing the computational complexity of 5G and beyond 

networks. While least squares (LS) estimation is widely employed for obtaining channel 

estimates due to its cost-effectiveness and independence from prior statistical information about 

the channel, it is associated with a relatively high estimation error. The presented paper suggests 

a novel channel estimation framework leveraging deep learning to enhance the accuracy of 

channel estimates obtained through the least squares (LS) approach. The objective is realized by 

employing a MIMO (multiple-input multiple-output) system with a multi-path channel profile, 

simulating scenarios in 5G and beyond networks, considering the level of mobility indicated by 

Doppler effects. The construction of the system model is applicable to any number of transceiver 

antennas, and the machine learning module is designed to be versatile, allowing the utilization of 

various neural network architectures. The numerical findings illustrate the effectiveness of the 

newly introduced deep learning-based channel estimation framework compared to conventional 

methods widely employed in prior research. Furthermore, among the examined artificial neural 

network architectures, bidirectional long short-term memory exhibits the highest quality in 

channel estimation and the lowest bit error ratio. 
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1. Introduction 

In contemporary communication technology, the utilization of Multiple Input Multiple Output 

(MIMO) for wireless communication represents a significant technical breakthrough. MIMO 

systems are characterized by equipping both the transmitting and receiving ends with multiple 

antenna elements. The fundamental idea behind MIMO is the combination of signals transmitted 

from all transmit antennas at each receive antenna element, aiming to enhance the Bit Error Rate 

(BER) performance or data rate for communication, ultimately improving the overall 

communication quality for each MIMO user. Leveraging this advantage can lead to a substantial 

increase in both the Quality of Service (QoS) of the networks and the revenues for the operator. 

Wireless systems employing multiple antennas offer a promising foundation for achieving high 

data rates due to the enhanced bit per symbol capacity when compared to Single Input Single 

Output (SISO), Multiple Input Single Output (MISO), and Single Input Multiple Output (SIMO) 
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systems. The demand for high-data-rate wireless access is prevalent across various applications. 

Traditionally, achieving higher data rates in transmission has necessitated the allocation of 

additional bandwidth.  

In rich multipath environments, wireless communication systems have the potential to attain 

substantial channel capacities by capitalizing on the additional spatial dimension. The attainable 

capacity and performance are contingent on both channel conditions and the structure of the 

transmit signal. Achieving this objective is influenced by the design of the MIMO system 

architecture, which impacts the complexity of both the transmitter and, notably, the receiver. 

The MIMO coding technique can be categorized into three groups: Space–time coding (STC), 

space division multiplexing (SDM), and beamforming. At the heart of MIMO systems lies the 

fundamental concept of Space–Time Processing. Time serves as the inherent dimension for 

digital communication data, while space pertains to the spatial dimension involved in employing 

multiple spatially distributed antennas. Based on the literature survey, existing channel 

estimation techniques have not yielded satisfactory results. Therefore, we present an innovative 

approach that utilizes a hybrid of machine learning techniques (CNN, RNN) for channel 

estimation with the goal of enhancing the Mean Squared Error (MSE) and reducing the bit error 

rate (BER) in the MIMO-OFDM system. This approach aims to improve the overall performance 

and adaptability of the system in real-world scenarios. 

Objectives 

• To design and implement a hybrid of hybrid of machine learning (CNN, RNN) or 

artificial intelligence-based channel estimation method. This approach aims to 

significantly improve the accuracy of channel estimation and reduce both improve Mean 

Squared Error (MSE) and bit error rate (BER) metrics, thereby enhancing the overall 

performance and reliability of the MIMO -OFDM system. 

• The second objective is to conduct a comprehensive comparative analysis between the 

proposed machine learning or artificial intelligence-based channel estimation method  

2. Methodology  

To have introduced an innovative approach that capitalizes on a hybrid deep learning framework, 

combining Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), to 

enhance the precision of channel estimation. To focus lies in augmenting the Mean Squared 

Error (MSE) and minimizing the Bit Error Rate (BER) within MIMO-OFDM systems. This is 

achieved through a systematic three-step process: 

• Data Generation and MIMO-OFDM Setup: In the initial phase, we construct training 

data by implementing a MIMO-OFDM system encompassing both the transmitter and 

receiver components. This holistic setup serves as the foundation for subsequent stages. 

• Hybrid Deep Learning Training: The second step revolves around training a hybrid 

deep learning architecture, which seamlessly integrates both CNN and RNN components. 

This hybrid approach is adept at channel estimation tasks. The CNN aspect excels in 

extracting spatial features from the data, while the RNN aspect excels in capturing 
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temporal dependencies. By combining their strengths, we achieve an optimized channel 

estimation model. 

• Integrated System Implementation: The final stage entails the integration of the 

MIMO-OFDM transmitter and receiver with the hybrid CNN-RNN channel estimation 

model. This comprehensive system brings together the advancements made in the first 

two steps. As a result, it incorporates enhanced channel estimation capabilities, thereby 

leading to improved MSE and BER metrics within the MIMO-OFDM framework. 

Through this innovative three-step methodology, we effectively address the challenges of 

accurate channel estimation in MIMO-OFDM systems. The integration of hybrid deep 

learning not only bolsters the accuracy of estimation but also aligns with the overarching 

goal of minimizing MSE and BER for optimized communication performance. 

 
Figure 1: Block diagram 

3. Implementation  

Deep learning architecture using Long Short-Term Memory (LSTM) networks for 

sequence data classification. Let's break down the architecture details: 

Input Layer: 

Sequence Input Layer(256): This layer defines the input for sequences of data, where 

each sequence has a length of 256. It's suitable for handling sequences of data points, 

such as time-series data or natural language sequences. 

 

LSTM Layer: 

lstm Layer(100, 'Output Mode', 'last'): This is an LSTM layer with 100 hidden units. 

LSTMs are a type of recurrent neural network (RNN) designed to handle sequence data 

by capturing long-range dependencies. The 'Output Mode', 'last' parameter setting means 

that only the output corresponding to the last time step of the sequence will be used as the 

LSTM's output. 

 

Fully Connected Layer: 

Fully Connected Layer(4): This layer is a fully connected (dense) layer with 4 neurons. It 

takes the output from the LSTM layer and processes it using standard feedforward 
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connections. This layer can perform transformations on the learned features before 

passing them to the final output layer. 

 

Softmax Layer: 

Softmax Layer: The softmax layer performs the final transformation on the output of the 

previous layer. It converts the raw scores into a probability distribution over the classes. 

In this case, it will provide the probabilities for the 4 classes of the classification task. 

 

Classification Layer: 

classification Layer: This is the final layer of the network and is specific to the 

classification task. It applies a softmax activation function to the output of the previous 

layer and computes the loss for the classification task. 

the architecture processes sequences of length 256 through an LSTM layer with 100 

hidden units. The output of the LSTM layer is then passed through a fully connected 

layer, followed by a softmax layer for probability computation, and finally, the 

classification layer for loss computation in a classification task with 4 classes. 

 

Convolutional Neural Network (CNN) architecture for image classification. Let's 

break down the architecture details: 

 

Figure 1: Basic CNN Architecture Diagram 

Input Layer: 

Image Input Layer([16 16 1]): This layer defines the input for images. Each image is 

expected to have a size of 16x16 pixels with a single channel (grayscale). The input layer 

sets the dimensions for the images that will be fed into the network. 

 

Convolutional Layer: 

convolution2d Layer(5, 20): This is a 2D convolutional layer with 20 filters of size 5x5. 

Convolutional layers apply filters to the input image to extract features. The 20 filters in 

this layer will detect various patterns and features in the input images. 

Rectified Linear Unit (ReLU) Layer: 



 
 

463 

Vol. 21, No. 1, (2024) 

ISSN: 1005-0930 

relu Layer: ReLU activation functions introduce non-linearity into the network. They 

apply an element-wise function that sets all negative values to zero and leaves positive 

values unchanged. This helps the network learn complex relationships in the data. 

Max Pooling Layer: 

maxPooling2d Layer(2, 'Stride', 2): Max pooling layers downsample the spatial 

dimensions of the feature maps while retaining the most important information. This 

layer performs max pooling with a 2x2 window and a stride of 2, effectively reducing the 

spatial dimensions by half. 

Fully Connected Layer: 

fully Connected Layer(4): This is a fully connected (dense) layer with 4 neurons. It takes 

the output from the previous layers and processes it using standard feedforward 

connections. This layer can perform transformations on the learned features before 

passing them to the final output layer. 

Softmax Layer: 

softmax Layer: Similar to the previous explanation, this layer computes the softmax 

activation to produce a probability distribution over the classes. 

Classification Layer: 

Classification Layer: This is the final layer of the network, specifically designed for 

classification tasks. It applies the softmax activation function to the output of the previous 

layer and computes the loss for the classification task. 

 

In summary, the architecture takes 16x16 grayscale images as input and processes them 

through a sequence of layers. The convolutional layer extracts features, followed by 

ReLU activation for non-linearity. Max pooling reduces spatial dimensions, and a fully 

connected layer processes the features before classification. The softmax layer produces 

class probabilities, and the classification layer computes the loss for training. 

4. Results and Discussions 

 

In order to train and test the FDNN model, a set of data with 255, and 860 realizations was 

gathered. We used 70% of the data for training, 15% as the validation set, and 15% of the data 

for testing. For the CNN model and bi-LSTM model, we used a data set of 11,000 realizations 

with the same proportions for the training set, validation set, and test set as the FDNN. The 

parameters for training those models are shown in Table 1. 

Table 1: Parameters for training deep learning models. 

 
Training Option Value 

Optimizer adam 

Epochs 100 

Mini Batch size 1000 

Learning Rate 0.01 

Learn rate Drop Factor 0.1 
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To evaluate the performance of the proposed estimators, the simulation was carried out and the 

results compared with the conventional LS estimation and LMMSE estimation by utilizing the 

bit error rate (BER) and mean square error (MSE) versus signal to noise ratio (SNR). 

 

Figure 2: SNR to MSE 

Figures 2 show the MSE of different channel estimations in the first and second scenarios, 

respectively. The 16-QAM (quadrature amplitude modulation) method was deployed to 

modulate the transmitted data in the simulation. The channel estimation methods led to the MSE 

declining gradually as the SNR increased. In both the scenarios, LS estimation yielded the worst 

MSE performance, which was because it does not take the statistical channel information into 

account when performing the channel estimation. On the contrary, LMMSE estimation exploits 

the mean and covariance matrices, which resulted in better MSE performance than its LS 

counterpart. Our proposed deep learning estimators yielded the best MSE performance compared 

to the conventional methods. 

 

Figure 3: SNR to BER 

it is also provide the BER performance of the considered scenarios in Figure 3 with the different 

channel estimation methods, respectively. The trend of the BER performance for the examined 

estimators is similar to that of MSE performance. However, in both scenarios, the BER 

performance of the FDNN model is slightly worse than the CNN+LSTM method at SNR = 10 
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dB. This can be explained by the fact that the loss function has been defined to minimize the 

channel estimation errors instead of the BER metric.  

5. Conclusions 

In this paper, the presented various DNN structures, including a fully-connected DNN, CNN, 

and bi-LSTM, to aid the channel estimation process in a MIMO-OFDM system under different 

fading multi-path channel scenarios modeled by the TDL-C model defined in 5G networks. The 

proposed CNN+LSTM-based channel estimation framework was trained using channel estimates 

from least squares estimation alongside corresponding perfect channels to determine the 

parameters as weights and biases. Utilizing the QAM modulation scheme, we compared the 

performance of the proposed estimations with conventional LSTM and CNN estimations in 

terms of channel estimation error and bit error ratio as functions of SNR levels. As the channel 

properties were effectively learned, we observed that the proposed hybrid deep learning-aided 

estimations significantly reduced the channel estimation error and bit error ratio. Among the 

proposed deep learning-hybrid approaches, the LSTM and CNN models showed the greatest 

reduction in channel estimation error due to their ability to exploit the time and frequency 

correlation among the channels. Furthermore, the proposed deep learning-based channel 

estimation methods demonstrated robust performance across varying pilot densities and changes 

in Doppler frequency. 
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